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The new technologies and communications systems are being set up in all areas. It 
leads to treating data from different sources and for several proposes. But it is nec-
essary to obtain only the information that is required. Digital filters, together with 
analogue filters, are used for these objectives. The main advantage of the digital filters 
is that they can be applied at zero cost and with a great flexibility. The mathematical 
models where they are created have different complexity and computational cost. In 
this book the most relevant filters are described, and with different applications. The 
material covered in this text is crucial for getting a general idea about digital filters. 
This book also presents some best options for each case study considered. 

In spite of the mathematical complexity of the digital filters, the text is presented for 
any reader with a motivation for learning about digital filters. The high level contents 
are shown with an exhaust introduction, where the most important works in the litera-
ture are referenced and it completed with various examples.

A discrete filter is presented within a well-known and common framework, namely 
the State Space with the help of the Kalman Filter (KF) and/or complementary Fixed 
Interval Smoother (FIS) algorithms. It is presented in several case studies for detecting 
faults where these models can be adapted to external and internal conditions to the 
mechanism. All of these models are developed within a well-known common frame-
work, namely the State Space (SS). The KF is a powerful algorithm, because it supports 
estimations of past, present and future states. In this case, it is used for filtering with 
Integrated Random Walks by setting up a bivariate model composed of two time series, 
i.e. the reference curve on one hand and each one of the empirical curves obtained on 
line on the other hand. Other options are to use a model VARMA (Vector autoregres-
sive moving-average) class or a local level plus noise but set up in continuous time. 
Finally, due to the nature of the data, a pertinent class is a Dynamic Harmonic Regres-
sion, similar to a Fourier analysis, but with advanced features included to incorporate 
a time varying period observed in the data.

Preface



PrefaceVIII

In the case of a linear circuit and frequency filter analysis for sinusoidal and periodical 
input signals,  the spectral representations employing Fourier transform are studied. 
In that case, Laplace’s transformations are employed in order to consider a complex 
frequency. The compound finite signal representations are done in the form of the set 
of damped oscillatory components. It is an efficient method for filtering and it can work 
with a complex coordinate. In the case of Infinite Impulse Response (IIR) filter impulse 
functions the representation uses this set of damped oscillatory components. Impulse 
functions of Finite Impulse Response (FIR) filters representation are also based on this 
set of damped oscillatory components, but with the difference of a finite duration of 
the impulse functions. It considers the stationary and non stationary modes, where it 
can be calculated easily in the spectral representation context. It is possible considering 
the application of spectral representations in complex frequency coordinates. It leads 
to consider both  spectral approach and the state space method for frequency filter 
analysis and synthesis. The filter synthesis problem comes to dependence composition 
for filter transfer function on complex frequencies of input signal components.

Complex filters can be namely digital filters with complex coefficients. They are em-
ployed in complex signal processing compared to the real signal processing (e.g. tele-
communications). This can imply real and imaginary inputs and outputs, and these 
signals need to be separated into real and imaginary parts for being studied as complex 
signals. The first- and second-order IIR orthogonal complex sections are synthesized as 
filters in designing cascade structures or as single filter structures. It leads delay-free 
loops and has a canonical number of elements. The low-sensitivity 1 and 2 variable 
complex sections can be used in narrowband band-pass / band-stop structures. The 
main advantages of these models are the higher freedom of tuning, reduced complex-
ity and lower stop-band sensitivity.

The response dela in digital circuits should be adjusted to a fraction of the sampling 
interval and it should be fixed or variable in order to control the fractional delay (FD). 
These circuits are used in telecommunications applications that require speech syn-
thesis and processing, image interpolation, sigma-delta modulators, time-delay es-
timation, in some biomedical applications and for modeling of musical instruments. 
Considering the phase-sensitivity minimization of each individual first- and second-
order allpass section in the filter cascade realization, fixed and variable allpass-based 
fractional delay filters are developed and adjusted through sensitivity minimizations. 
The real and complex-conjugate poles combinations for different values of the FD pa-
rameter D and of the transfer function (TF) order N are analyzed trying to minimize 
the overall sensitivity.

A two-dimensional (2D) digital filter is employed to attain the desired cut-off fre-
quency and the stable monotonic amplitude-frequency responses of this filter. It is 
developed in accordance with monotonic amplitude-frequency responses employing 
Darlington-type gyrator networks and doubly-terminated RLC-networks by the ap-
plication of Generalized Bilinear Transformation (GBT). The doubly terminated RLC 
networks are adjusted as second-order Butterworth and Gargour & Ramachandran. It 
leads low-pass, high-pass, band-pass and band-elimination filters. The transformation 
between these filters is done by the value and sign of the parameter called g and GBT. 
It is useful in digital image (video and audio), and for enhancement and restoration in 
different fields, as medical science, geographical science and environment, space and 
robotic engineering, etc.  



IXPreface

From a 1D filter (low-pass and maximally-flat or very selective), a 2D filter can be devel-
oped. These are essentially spectral transformations (frequency transformations) via 
bilinear or Euler transformations followed by mappings. This book analyzes the case 
of recursive filter approaches in the frequency domain applied in image processing: 
directional selective filters, oriented wedge filters, fan filters, diamond-shaped filters, 
etc. The zero-phase case is also considered. All the models are mainly analytical, and 
in some cases, numerical optimization is employed, in particular - rational approxima-
tions. The reason to choose the analytical approach is that the 2D parameters can be 
controlled by adjusting the prototype. An analytical design method in polar coordi-
nates is proposed and defined by a periodic function expressed in polar coordinates 
in the frequency plane. It can yield selective two or multi-directional filters, and also 
fan and diamond filters. Finally, two-lobe filters are analysed, selective four-lobe filters 
with an arbitrary orientation angle, fan filters and diamond filters.

Single correction filters or ensembles of correction filters, sensitivity filters, lumbar 
spine filter, banks of vehicle filters, and road texture filters are presented. They are 
studied in two examples on safety of traffic: road hump analysis and determination of 
road texture. Digital filters are recommended for low robustness, and this originates 
from the definition of the feature and/or its incomplete specification instead of a feature 
which is not robust and questionable. The digital filters employed fit into the above 
mentioned standard linear-in-response finite/infinite impulse response (FIR/IIR) form 
for direct implementation. In this case any filter may be transferred to a state-space 
form for generalization into a KF.

Carry-Save Arithmetic is employed in order to achieve an optimal design of single 
constant multipliers for coefficients with up to 19 bits wordlength. The non-redundant 
representation is also considered. The proposed techniques are useful when a high-
speed realization is required. It is demonstrated in the multiple constant multiplication 
problems suitable for transposed direct form FIR filters using carry-save representa-
tion of intermediate results but non-redundant input.

Lattice wave digital (LWD) filter (parallel connections of all-pass filters) is a structure 
implemented in the recursive digital filters. Three cases are considered in this book: 
primarily the overall filter, constructed as a cascade of low-order LWD filters. Secondly, 
approximately linear-phase LWD filters are constructed as a single block. The reason 
for this is the lack of benefits for the direct-form LWD filter design in the usage of a 
cascade of several filter blocks. Finally, it is focused on the design of special recursive 
single-stage and multistage Nth-band decimators and interpolators. The coefficient 
optimization is performed with following steps: an initial infinite-precision filter is 
designed such that it exceeds the given criteria in order to provide some tolerance for 
coefficient quantization; then, a nonlinear optimization algorithm is employed for de-
termining a parameter space of the infinite-precision coefficients including the feasible 
space where the filter meets the given criteria; and finally, the filter parameters are 
found in this space so that the resulting filter meets the given criteria with the simplest 
coefficient representation forms. The realization of these filters does not require the use 
of a costly general multiplier element. It leads to the fact that the filters are goods in 
very large-scale integration (VLSI).



PrefaceX

The sampled-data and digital filters (i.e. “memory transistor” or “memory transcon-
ductor” approaches) are both studied for their effectivity. This case is about biquadratic 
sections used in cascade design. The switched-current (SI) circuits are also one of the 
case studies employed, where it can be extended to cases as digital VLSI-CMOS tech-
nologies, lower supply voltage and wide dynamic range, considering an SI as “analog 
counterpart” of the digital filters. The biquadratic realization structures are developed 
from the first and second direct forms of the 2nd-order digital filter. The continuous-
time biquadratic sections design is also considered. Finally, the optimization of sam-
pled-data and digital filters design is solved by using the heuristic algorithm as the 
differential evolutionary algorithm.

Fausto Pedro García Márquez
University of Castilla-La Mancha (UCLM)

Spain
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1. Abstract 

Faults in mechanisms must be detected quickly and reliably in order to avoid important 
losses. Detection systems should be developed to minimize maintenance costs and are 
generally based on consistent models, but as simple as possible. Also, the models for 
detecting faults must adapt to external and internal conditions to the mechanism. The 
present chapter deals with three particular maintenance algorithms for turnouts in railway 
infrastructure by means of discrete filters that comply with these general objectives. All of 
them have the virtue of being developed within a well-known and common framework, 
namely the State Space with the help of the Kalman Filter (KF) and/or complementary Fixed 
Interval Smoother (FIS) algorithms. The algorithms are tested on real applications and 
thorough results are shown. 

 
2. Introduction    

Faults in any important mechanisms must be detected quickly and reliably if the 
information is to be useful. Generally such mechanisms may be modeled as discrete 
dynamic systems, where data must be processed on line. When feasible, the detection 
system should use a model as simple as possible for detecting faults quickly by analyzing 
data in real time. The models for detecting faults must adapt to external and internal 
conditions to the mechanism, since both of them may affect the system as a whole.  
 
The present chapter deals with maintenance systems for turnouts in railway infrastructure 
by means of discrete filters. Turnouts are assembled from switches and a crossing where the 
moving parts are often described as the “points” move by the point mechanism. The 
standard railway point mechanism is a complex electro-mechanical device with many 
potential failure modes.  
 
Several approaches for maintenance of such devices are shown in this chapter and briefly 
described in this introduction. All of them have the virtue of being developed within a well-
known common framework, namely the State Space (SS) with the help of the Kalman Filter 
(KF) and/or complementary Fixed Interval Smoother (FIS) algorithms, exposed in general 
terms in the following section. 
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Based on this common framework, the following subsections in this introduction show the 
particular applications shown in later sections of the chapter. 

 
2.1. Filtering with Integrated Random Walks (IRW) 
One possible way to analyze faults on line is to work with a reference dynamic system for 
their analysis. If the absolute value of the difference between the actual data and the 
reference data (i.e. the profile without any fault) is analyzed, the majority of faults may be 
detected by means of a simplified univariate dynamic system, like the one explored in [9]. 
The dynamic system and the use of the SS framework and the KF in this study allow 
increasing the reliability of the model presented that is the basic input to a rule-based 
decision mechanism. When applied to the linear discrete data filtering problem, the KF is a 
powerful algorithm, because it supports estimations of past, present and, most importantly, 
future states. It can therefore be used in predictive maintenance applications where data 
collected from sensors is affected by measurement and transmission line noise [12]. 
 
The previous approach may be exploited by setting up a bivariate model composed of two 
time series, i.e. the reference curve on one hand and each one of the empirical curves 
obtained on line on the other hand. More specifically (see section 4.2 below) a tentative 
model consists of a bivariate trend plus noise structure. The correlation between either 
trends or signals free from noise is considered as an indication of similarity between the 
curves and therefore the inexistence of failures. As long as the new incoming data is free 
from fault, the correlation parameter is close to one, but as a failure starts to develop this 
parameter tends to differ from one. The cut-off value of the correlation coefficient relevant to 
discern ‘good’ and ‘bad’ curves is selected on practical grounds based on past experience 
with this kind of data, but refined formal statistical criteria may be used as well [19]. Even 
forecasts of the curve that is being studied may be produced at any point in time, based on 
the current parameter values and the future data of the reference curve [14]. Therefore the 
fault may be detected ahead of time. 

 
2.2. Random Walks and smoothing 
Similar measurement data were collected from sensors mounted on a UK type M63 point 
machine at the Carillion Rail (formerly GTRM) Training Centre in Stafford (UK). It is 
difficult to compare the measurements taken during induced failure conditions with those 
from the fault-free condition because of noise in the measurements. The measurement data 
needed to be filtered in order to reduce the noise before comparisons may be made. Filtering 
using a SS model and the KF was an option (like in [9], [19] and [20]). Assuming the noisy 
data is a signal plus noise model, the KF reduces the power of the 100 and 200 Hz interfering 
signals. Rather than augmenting the SS models to express the additional knowledge of the 
interfering signals, a much simpler smoothing seems more convenient because of the 
relationship between the sample rate and the frequencies of the interfering signals, and 
provides excellent results for the data collected during this series of experiments [10]. 

 
2.3. Advance Dynamic Harmonic Regression (DHR) 
A different case study was based on data collected from point mechanisms at Abbotswood 
Junction (UK). Three electro-mechanical and four electro-hydraulic point machines were 

 

monitored by a RCM system. Processed information was sent remotely from the trackside 
data-collection units to a personal computer located in a local relay room. 
 
A fault is detected by comparing the forecasts of the model, considered as the expected 
signal in the case of no faults, with the actual data coming from the point mechanism when 
a movement is in progress. If the error is too large, measured by its standard deviation, a 
fault alarm is issued. The limit at which an error is considered too large is a design 
parameter that is fixed by experimentation. The system adapts to the changes experienced 
by the point machine. There are internal alterations (like friction, wear, etc.) and external as 
well (like environmental conditions, impacts, obstacles, etc.). The adaptability of the system 
is accomplished by continuous estimation of the models as new information becomes 
available and by discarding the oldest information. Models are always estimated on fault-
free data [13].  
 
The key point in this application is that the expected shape is computed as the forecast of a 
combination of two models that work interactively on historical data coming from signals 
free from any fault. The first of the models forecasts the time span a movement would take 
in case of absence of faults (an appropriate model used in this case was of the VARMA class 
or a local level plus noise but set up in continuous time). The second model is run to forecast 
the signal itself (due to the nature of the data a pertinent class is a Dynamic Harmonic 
Regression, DHR, similar to a Fourier analysis, but with advanced features included to 
incorporate a time varying period observed in the data). 
 
The outline of the chapter is as follows. Section 3 reports a brief explanation of the general 
framework on which all the models in this chapter are set up, namely the State Space 
systems. Section 4 shows the first of the applications, i.e. in the point mechanisms. Finally 
section 5 shows how a fault detection algorithm may be implemented on seven point 
machines at Abbotswood junction (UK). 

 
3. State Space systems 

The general framework on which all models in this chapter are cast, is the so called State 
Space systems, that have experienced a remarkable attention during the last decades, as the 
extended literature about it reveals [3], [7], [13], [15], [16], [17], [21], [24], [26] and [27]. 
 
A stochastic discrete-time State Space system (SS) is a model composed of two sets of 
equations, the Observation Equations, and State Equations. The former relates the output to the 
states of the system, while the latter reflects the dynamic behavior of the system by relating 
the current value of the states to their past values. There are a number of different 
formulations of these equations, but one fairly general representation is given by 
equations (1) (see [3] and [21]). In general, much simpler models are sufficient, as later case 
studies show. 
 

 
(ii)               :  Equationsn Observatio
(i)             :            Equations State

ttt

ttt

vCxHz
wExx

tt

t1t

+
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In (1) tz  is the m dimensional vector of observed variables for Nt ,,2,1  ; tx  is an n 

dimensional stochastic state vector; tw  is an r dimensional vector of (to be Gaussian) 
system disturbances, i.e. zero mean white noise inputs with a covariance matrix tQ ; and tv  
is a s dimensional vector of zero mean white noise variables (measurement noise: again 
assumed to be Gaussian) with a covariance matrix tR . In general, the vector tv  is assumed 
to be independent of tw  (not necessarily), and these two noise vectors are independent of 

the initial state vector 0x . tttttt RQCHE  and , , , , ,  are, respectively, the n n, n r, m n, 
and m s, r r and s s system matrices, some elements of which are known and others 
that need to be estimated in some way. 
 
Given the general SS form (1), the estimation problem consists of finding the first and 
second order moments (mean and covariance) of the state vector, conditional on all the data 
in a sample. Provided that all disturbances in the model are Gaussian, a Kalman Filter (KF) 
produces the optimal estimates of such moments in the sense of minimizing the Mean 
Squared Errors (MSE). An algorithm that is used in parallel with the KF and is not so well-
known in certain contexts is the Fixed Interval Smoothing (FIS) algorithm, which allows for an 
operation similar to that of the KF but with a different set of information. The KF used in 
this chapter is: 
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The backward FIS recursions are: 
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This general SS formulation is capable of handling many nonstationary linear dynamical 
systems; also it can model nonlinear systems but conditionally Gaussian; general 
heteroscedastic systems; time-varying systems; etc. In addition, many kinds of extensions of 
model have been proposed in the literature, such as linear approximations of functionally 
nonlinear dynamic systems; non-Gaussian disturbances; etc. Missing data is not a problem 
given the recursive nature of the algorithms, because such data are replaced by their 

 

expectations based on the model and the data. Then, if such data is at the end of the sample 
the KF produces forecasts of the signal, while if they are in the middle or at the beginning 
both algorithms produce interpolation or forecasts from the beginning of the series 
backwards.  
 
The application of the recursive KF/FIS algorithms requires values for all the system 
matrices tttttt RQCHE  and , , , , , . Most of the elements of these matrices must be 
estimated by efficient methods. The Maximum Likelihood (ML) method in the time domain 
by means of ‘prediction error decomposition’ ([24] and [15]) is the most common because of 
its generality and good theoretical properties.  

 
4. Filtering with Integrated Random Walks (IRW) 

4.1. Data 
Approximately 55 % of railway infrastructure component failures on high speed lines are 
due to signalling equipment and turnouts. “Signalling equipment” covers signals, track 
circuits, interlockings, automatic train protection (ATP) or LZB (track loop based ATP), and 
the traffic control centre. From another point of view, the annual cost of maintaining points 
is rather high compared to other infrastructure elements, about 3.4 million UKP (United 
Kingdom Pound) per year for about 1000 km of railway. TC-TCR trade circuits, for example, 
cost 2.1 million UKP per year for the same area. Of the points expenditure, 1.2 million UKP 
is for clamp lock type (hydraulic) turnout and 1.4 UPK million for electrically operated 
turnouts (data provided by a British asset manager). Turnouts can also be used to 
implement flank protection for a train route allocated to another train. This is achieved by 
positioning the blades of the turnout in such a way that a train driving through the turnout 
is not directed into a track segment belonging to the route of another train.  
 
Most standard point machines (see Fig. 1) contain a switch actuating and a locking 
mechanism which includes a hand-throw lever and a selector lever to allow operation by 
power or hand. The mechanism is normally divided into three major subsystems: (i) the 
motor unit which may includes a contactor control arrangement and a terminal area; (ii) a 
gearbox comprising spur-gears and a worm reduction unit with overload clutch; and (iii) 
the dual control mechanism as well as a controller subsystem with motor cut-off and 
detection contacts. Generally, there are also mechanical linkages for the detection and 
locking of the point. The standard railway point is therefore a complex electro-mechanical 
device with many potential failure modes. 
 
The circuit controller includes detection switches and a pair of snap-action switches to stop 
the machine at the end of its stroke and to brake the motor electrically so that the 
mechanism is not subject to impacts. The detection switches have high pressure wiping 
contacts made of silver/cadmium oxide or gold and they are operated by both the lockbox 
and the detection rod. The detection switches have additional contacts to allow mid-stroke 
short circuiting of the detection relays to avoid wrong indications in the signal box or 
electronic interlocking. 
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This general SS formulation is capable of handling many nonstationary linear dynamical 
systems; also it can model nonlinear systems but conditionally Gaussian; general 
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implement flank protection for a train route allocated to another train. This is achieved by 
positioning the blades of the turnout in such a way that a train driving through the turnout 
is not directed into a track segment belonging to the route of another train.  
 
Most standard point machines (see Fig. 1) contain a switch actuating and a locking 
mechanism which includes a hand-throw lever and a selector lever to allow operation by 
power or hand. The mechanism is normally divided into three major subsystems: (i) the 
motor unit which may includes a contactor control arrangement and a terminal area; (ii) a 
gearbox comprising spur-gears and a worm reduction unit with overload clutch; and (iii) 
the dual control mechanism as well as a controller subsystem with motor cut-off and 
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short circuiting of the detection relays to avoid wrong indications in the signal box or 
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Fig. 1. Point Mechanism 
 
476 experiments (point moves or attempted point moves) were carried out while collecting 
time, force and operating current data. The data from the point mechanism is initially 
classified in terms of direction of movement, i.e., either reverse to normal direction or 
normal to reverse direction. For both directions, faults have been detected with “current (A) 
vs. time (s)” curves and “force (N) vs. (s)” curves (see some examples in Fig. 2(a) and 2(b)). It 
was observed that “current (A) vs. time (s)” curves are not the best choice for detecting 
faults in point mechanisms. The final classification of faults employs only the magnitude 
and the moment when they change with respect to the reference curves.  
 

 
Fig. 2. Operating force curves for a point mechanism 
 
For detecting faults in point mechanisms, a model was employed that can determine the 
dynamic character of the system. For instance, the reference signals or curves for detecting 
faults depend on the environmental conditions (temperature, humidity, etc.), and on the in 
service time of the system, because the friction forces are larger at the beginning than once 
the system has worn in. The available data consists of 79 curves for the reverse to normal 
direction, including 4 curves “as commissioned”, and 72 curves for the normal to reverse 
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direction, with 3 curves “as commissioned” (some of them may be seen in Fig. 2). A 
reference dynamic system has to be applied to all of these variables. The data collected 
refers to force (N) versus time (s). The first conclusion after studying these curves is that we 
can detect only a few faults by analyzing the signal directly but, if we analyze the 
differences between the current data xj and the reference data xi in the form of absolute 
values dj (1), we can detect the majority of faults as they develop. 
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Some of these curves are shown in Fig. 3(a) and 3(b) for reverse to normal direction and 
normal to reverse direction respectively. The ‘x’ axis is time [s] and the ‘y’ axis is the difference 
between the dynamic mean geometric and the current curve as an absolute value [N]. 

 
Fig. 3. Difference between the reference signal for the point and the newly acquired data in 
absolute values 

 
4.2. The model 
One feasible model written in SS form (1) for this application is of the type local mean plus 
noise for two signals simultaneously, where the local means are modeled by the dynamics 
implied by the state equations, i.e. 
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In model (2) all the system matrices are time invariant: I  is a two dimensional identity matrix; 
0  is a two by two matrix of zeros; 2

  are the variances of the noise signals or disturbances 
either in the state or observation equations; 

  is the covariance between two disturbances; 
and   is the correlation coefficient between the two noise signals in the state equation.  
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direction, with 3 curves “as commissioned” (some of them may be seen in Fig. 2). A 
reference dynamic system has to be applied to all of these variables. The data collected 
refers to force (N) versus time (s). The first conclusion after studying these curves is that we 
can detect only a few faults by analyzing the signal directly but, if we analyze the 
differences between the current data xj and the reference data xi in the form of absolute 
values dj (1), we can detect the majority of faults as they develop. 
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In model (2) all the system matrices are time invariant: I  is a two dimensional identity matrix; 
0  is a two by two matrix of zeros; 2

  are the variances of the noise signals or disturbances 
either in the state or observation equations; 

  is the covariance between two disturbances; 
and   is the correlation coefficient between the two noise signals in the state equation.  
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By comparing systems (2) and (1) it is easy to see the system matrices values in this 
particular case, i.e.  
 

  1   ;   ;   ;   ;
2

1
t 


























 tt

t

t
tt w

w
C0IHw

I
0

E
I0
II

Φ  

 

The unknown hyper-parameters to be estimated by ML in this model are Q  and R . It should 
be noted that Q  is parameterized in the way shown above in order to force the appearance 
of the correlation coefficient between the state disturbances explicitly. The following points 
must be taken into account when interpreting model (2):  

 The observation equation implies that the series are composed of a local mean 
level or trend with added noise. 

 The first two states in the model are the local mean level (or trends) of each 
series. In other words, they are the signals free from noise; 

 Given the structure of the model, it is easy to show that the third and fourth 
states are the gradients of the trends. The slopes are modelled here as stochastic 
and therefore changing as a function of time according to the variance of the 
state disturbances; 

 If the correlation coefficient is 1, both trends are proportional to each other, 
meaning that the dynamic behaviour of both trends is the same. This is an 
important point that the authors wanted to test later; 

 By definition, 2
  must be positive; 11   ; and R  must be positive 

definite. Since all these are parameters to be estimated, it may be advantageous 
constrained search algorithms; 

 The asymptotic distribution of the ML estimates are Gaussian if all the 
disturbances in model (2) are Gaussian. Then, since   is estimated explicitly, 
the confidence intervals and statistical hypothesis tests for this parameter may 
be easily constructed. 

In fact, the parameter   is proposed here as a way to discriminate between “faulty” and “as 
commissioned” curves (see below), where the “faulty” curve is caused by wear as described 
above. Strictly speaking, the two curves are behaving in the same way when 1 , but 
previous experience with point mechanisms of a similar kind must be incorporated here, 
because it is, difficult, in general to find those values in practical situations. Then, a cut-off 
value of   must be considered in order to discriminate between ‘good’ and ‘bad’ curves. 
 
The modeling strategy outlined above may be applied to both off-line and on-line situations. In 
this latter case it would be possible to get an estimated time series for   (with confidence bands) 
and the time of wear assessment detected on-line very quickly when parameters start to move 
away from their initial values. Even forecasts of the current curve may be produced at any point 
in time, based on the current parameter values and the future data of the reference curve.  
Very fast algorithms have been developed for ML estimation of SS systems in which all the 
unknowns are some elements of the covariance matrices Q  and R , such as in model (4).  
The problem of initializing the KF and hence ML needs to be resolved. One of the most 
important tools is the use of the exact likelihood function [5] and[6]. 

 

4.3. Experimental Results 
The model described in the previous subsection was employed in an off-line mode with data 
collected during laboratory tests (see Fig. 2). The model output (shown in Fig. 4, based in 
signals from Fig. 3) was then used to classify the curves as either “as commissioned” or 
“faulty”. This step may be achieved several ways. The approach compares   with the 
individual points in time with a relating high threshold value. A value of   below the 
threshold is an indication of a lack of correlation with the current reference curve and therefore 
is classified as “faulty”i. A more refined and somewhat more formal criterion is based on such 
single point estimate and its 95% confidence band. In this case, a curve is considered to be “as 
commissioned” if the upper limit of the confidence band is close to target value or equal to 1.  
 
For point operation in both directions, with a value of 99.0  the totality of faulty curves 
could be detected. In the NR direction, since the highest value of   for faulty curves was 
0.92 and the 95% confidence interval uses (0.77, 0.98). In the RN direction, the highest value 
of   for faulty curves was 0.97 and the 95% confidence interval was (0.93, 0.99). 
 
The results achieved with the same reference curve, but different test results are shown in 
Fig. 4, one “as commissioned” curve (top panel) and one faulty curve (bottom).  
 

 
Fig. 4. Two examples of forecasts based on model (4) at different forecast origins. One “as 
commissioned” curve (top) and one “faulty” curve (bottom). Forecast origins are marked by 
the vertical line. 
 
In both cases the reference curve was available for the whole time span (based on previous 
curves taken from the system) and the information to test each curves was set up to the 
                                                                 
i Alternatively, the estimated correlation coefficient may be tuned so that the number of 
curves correctly classified is maximised. 
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By comparing systems (2) and (1) it is easy to see the system matrices values in this 
particular case, i.e.  
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The unknown hyper-parameters to be estimated by ML in this model are Q  and R . It should 
be noted that Q  is parameterized in the way shown above in order to force the appearance 
of the correlation coefficient between the state disturbances explicitly. The following points 
must be taken into account when interpreting model (2):  

 The observation equation implies that the series are composed of a local mean 
level or trend with added noise. 

 The first two states in the model are the local mean level (or trends) of each 
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 Given the structure of the model, it is easy to show that the third and fourth 
states are the gradients of the trends. The slopes are modelled here as stochastic 
and therefore changing as a function of time according to the variance of the 
state disturbances; 
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important point that the authors wanted to test later; 

 By definition, 2
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definite. Since all these are parameters to be estimated, it may be advantageous 
constrained search algorithms; 

 The asymptotic distribution of the ML estimates are Gaussian if all the 
disturbances in model (2) are Gaussian. Then, since   is estimated explicitly, 
the confidence intervals and statistical hypothesis tests for this parameter may 
be easily constructed. 

In fact, the parameter   is proposed here as a way to discriminate between “faulty” and “as 
commissioned” curves (see below), where the “faulty” curve is caused by wear as described 
above. Strictly speaking, the two curves are behaving in the same way when 1 , but 
previous experience with point mechanisms of a similar kind must be incorporated here, 
because it is, difficult, in general to find those values in practical situations. Then, a cut-off 
value of   must be considered in order to discriminate between ‘good’ and ‘bad’ curves. 
 
The modeling strategy outlined above may be applied to both off-line and on-line situations. In 
this latter case it would be possible to get an estimated time series for   (with confidence bands) 
and the time of wear assessment detected on-line very quickly when parameters start to move 
away from their initial values. Even forecasts of the current curve may be produced at any point 
in time, based on the current parameter values and the future data of the reference curve.  
Very fast algorithms have been developed for ML estimation of SS systems in which all the 
unknowns are some elements of the covariance matrices Q  and R , such as in model (4).  
The problem of initializing the KF and hence ML needs to be resolved. One of the most 
important tools is the use of the exact likelihood function [5] and[6]. 
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The model described in the previous subsection was employed in an off-line mode with data 
collected during laboratory tests (see Fig. 2). The model output (shown in Fig. 4, based in 
signals from Fig. 3) was then used to classify the curves as either “as commissioned” or 
“faulty”. This step may be achieved several ways. The approach compares   with the 
individual points in time with a relating high threshold value. A value of   below the 
threshold is an indication of a lack of correlation with the current reference curve and therefore 
is classified as “faulty”i. A more refined and somewhat more formal criterion is based on such 
single point estimate and its 95% confidence band. In this case, a curve is considered to be “as 
commissioned” if the upper limit of the confidence band is close to target value or equal to 1.  
 
For point operation in both directions, with a value of 99.0  the totality of faulty curves 
could be detected. In the NR direction, since the highest value of   for faulty curves was 
0.92 and the 95% confidence interval uses (0.77, 0.98). In the RN direction, the highest value 
of   for faulty curves was 0.97 and the 95% confidence interval was (0.93, 0.99). 
 
The results achieved with the same reference curve, but different test results are shown in 
Fig. 4, one “as commissioned” curve (top panel) and one faulty curve (bottom).  
 

 
Fig. 4. Two examples of forecasts based on model (4) at different forecast origins. One “as 
commissioned” curve (top) and one “faulty” curve (bottom). Forecast origins are marked by 
the vertical line. 
 
In both cases the reference curve was available for the whole time span (based on previous 
curves taken from the system) and the information to test each curves was set up to the 
                                                                 
i Alternatively, the estimated correlation coefficient may be tuned so that the number of 
curves correctly classified is maximised. 

0 1 2 3 4 5 6 7 8
0

20

40

60

80

D
iff

er
en

ce
 in

 A
bs

. V
al

ue
 (N

)

0 1 2 3 4 5 6 7 8
0

20

40

60

80

D
iff

er
en

ce
s i

n 
A

bs
. V

al
ue

 (N
)

Time (s)



Digital Filters10

 

forecast origin (vertical line). The objective of obtaining a forecast for the behavior of the 
system based on such incomplete information was thus using model (4). In an on-line 
situation, the parameters and the forecasts are updated each time a new observation is 
available. 
 
Fig. 5 shows the recursive estimate of   with its 95% confidence intervals (assuming gaussian 
noises) for an “as commissioned” curve (top) and a “faulty” one (bottom). In both cases the 
confidence on the estimate tends to increase as more information becomes available. 
 

 
Fig. 5. Recursive estimation of   (stars) and 95% confidence bands (solid) for one “as 
commissioned” curve (top) and one “faulty” curve (bottom). 

 
5. Random Walks and smoothing 

5.1. Device and data 
Following successful implementation on a level crossing mechanism (Roberts 2002) [23], the 
authors adapted the methods to detect faults in seven point machines at Abbotswood 
junction, shown in Fig. 6 as boxes 638, 639, 640, 641A, 641B, 642A and 642B.  
 
The configuration deployed at Abbotswood junction was developed in collaboration with 
Carillion Rail (formerly GTRM), Network Rail (formerly RailTrack) and Computer 
Controlled Solutions Ltd. The junction consists of four electro-mechanical M63 and three 
electro-hydraulic point machines, shown in Figure 2. Each M63 machine is fitted with a load 
pin and Hall-effect current clamps. The electric-hydraulic point machines are instrumented 
with two hydraulic pressure transducers, namely an oil level transducer and a current 
transducer. A 1 Mb/sec WorldFIP network, compatible with the Fieldbus standard EN50170 
(CENELEC EN50170 2002) [4], connects the trackside data-collection units to a PC located in 
the local relay room. Data acquisition software was written to collect data with a sampling 
rate of 200 Hz. Processed results can be observed on the local PC and also remotely. 
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Fig. 6. Set of points and the relevant components/sub-units at Abbotswood junction. 
 
The supply voltage of the point machine was measured (Fig. 7a), as well as the current 
drawn by the electric motor (Fig. 7b) and the system as a whole (Fig. 7d). In addition, the 
force in the drive bar was measured with a load pin introduced into the bolted connection 
between the drive bar and the drive rod (Fig. 7c). Fig. 7 shows the raw measurement signals 
taken in the fault-free (control or “as commissioned”) condition for normal to reverse and 
reverse to normal operation, respectively. Note that the currents and voltages begin and end 
at zero for both directions of operation, but a static force remains following the reverse to 
normal throw and a different force remains after the normal to reverse throw. 
 
It is difficult to compare the measurements taken during induced failure conditions with 
those from the fault-free condition because of noise in the measurements. 
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Fig. 7. ‘As commissioned’ measured signals for the normal to reverse throw 

 
5.2. Filtering the signal 
One possibility to reduce the noise is by using the SS formulation in (1) as a digital filter 
capable of reducing observation noise when the measured quantity varies slowly, but 
additive measurement noise covers a broad spectrum [8], [9]. In this particular case the 
signal being measured is modeled as a random walk, i.e. it tends to change by small 
amounts in a short time but can change by larger amounts over longer periods of time. The 
SS model used for each signal is described by equations (3). 
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Comparing with the general SS equations (1) we have: 
 Variables tx , tz , Q, R, tw  and tv  are all scalars. 
 1   ;1   ;   ;1   ;1 t  ttttt w CHwEΦ . 

 The initial value given to 0x̂  is: 0ˆ0 x .  

 The initial value of 0P is chosen to reflect uncertainty in the initial estimate. Here 

0P  is initialised as 6
0 10P . 

 The remaining quantities to be specified are Q, the variance of the noise driving the 
random walk, and R, the variance of the observation noise. 

 
By empirical methods using simulation, the best filtering is achieved with Q = 0.03 and 
R = 0.5. Note that the ratio Q/R defines the filter behavior. 
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The power spectral density of the filtered motor current (computed only while the motor is 
running) shows significant energy peaks at 100 and 200 Hz (Fig. 8, where the normalized 
frequency of 1 corresponds to a frequency of 250 Hz). 
 

 
Fig. 8. Motor current power spectral density following Kalman filtering 
 
The dynamic model used can be augmented to model the observed interfering signals as 
narrow band disturbances centred at 100 and 200 Hz. The spectrum of the motor current 
signal is examined next before a decision on the most appropriate filtering is taken. 
 
A spectral analysis of the motor current signal against time (or sample) shows that the 
characteristic of the noise varies with the operating condition of the motor. From the 
spectrogram one can identify a small 50 Hz interference signal before the motor begins to 
turn (samples 1 to 1100). In the second stage, where the motor is turning, the interfering 
signal has strong 100 Hz and 200 Hz components but no 50 Hz component. In the final 
stage, the motor current does not have identifiable 50, 100, or 200 Hz components, but is 
affected by general wideband noise.  
 
Power spectral densities (psds) were computed for data selected from each of the three 
distinct operating regions. There is a 50 Hz interference signal during the first region and 
wideband noise during the last. Fig. 9 shows the psd for the middle phase, which is the 
noisiest region. It is possible to augment the SS model to describe the observed interfering 
signals, using different models for each of the three distinct phases. However, a simpler yet 
effective smoothing scheme exists, as described in the next section. 
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Fig. 9. Power Spectral Density estimate (samples 1000 to 4000). 

 
5.3. Smoothing 
Noting that the sampling rate is 500 Hz and the interfering signals appear at 50, 100 and 
200 Hz, an alternative filtering method, or, more correctly, smoothing method, is to compute 
a moving average of the original signal over a suitable number of samples. For example, 
computing the moving average with 10 samples has zero response to signals at 50 Hz. 
However, a 100 Hz signal, with only 5 samples per cycle, is not necessarily removed, 
depending on the relative phase of the 100 Hz signal and the samples. Removal of the 50 Hz, 
100 Hz and 200 Hz interfering signals is guaranteed by computing a moving average over 
40 samples, i.e. over a time window of 80 ms. This moving average also spreads an 
instantaneous motor current change over 80 ms, but this is not a problem in practice as the 
motor current does not change instantaneously. A moving average computed over 40 
samples (80 ms) removes information at 12.5 Hz (and integer multiples thereof) and in 
addition acts as a general first-order low pass filter with a –3 dB point at 5.5 Hz. Losing 
information around 12.5 Hz is not important as long as comparisons are made between 
identically processed signals. By suitable alignment of the moving average result, filtering 
becomes smoothing. The smoothed signals are delayed by 40 ms, but this is of no concern 
for comparison with similarly processed fault-free signals. There is still some residual 100 
and 200 Hz interference, but it is much reduced. Identical smoothing has been applied to all 
measurement channels, even though they are not equally affected by 50 Hz noise and its 
harmonics. A comparison of the smoothed signals with the corresponding signals obtained 
in the fault-free condition is now possible. 
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Fig. 10. Average control curves. N-R: Normal to Reverse Direction 

 
5.4. Results 
The failure modes listed are identified using a pattern recognition method. The signals 
obtained in the fault-free condition, smoothed as described above and averaged over five 
throws, are shown in Fig. 10. The smoothed signals obtained under induced failure modes 
have been compared to the reference (or control) signals.  
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Fig. 11 shows the voltage signals for the failure modes Switch Blocked 1, Switch Blocked 2 
and Malleable Blockage, in the normal to reverse direction.  
 
Every failure can potentially be detected from signals a, b and c for normal to reverse 
transitions, and using signals b and c for reverse to normal transitions. Therefore, employing 
only signal b or c it potentially is possible to detect every fault in both operating directions. 

 
6. Advanced Dynamic Harmonic Regression (DHR) 

The system developed in this section detects faults by means of comparing what can be 
considered a “normal” or “expected” shape of a signal with respect to the actual shape 
observed as new data become available. One important feature of this system is that it 
adapts gradually to the changes experienced in the state of the point mechanism. The 
forecasts are always computed by including into the estimation sample the last point 
movements and discarding the older ones. In this way, time varying properties of the 
system due to a number of factors, like wear, are included, and hence the forecasts are 
adaptive. 
 
The data is a signal with long periods of inactivity, mixed up with other short periods where 
a point movement is being produced. Fig. 12 shows one small part of the dataset in the later 
case study, where the time axis has been truncated in order to show the movements of the 
signal. The real picture is one in which the inactivity periods are much longer that those 
shown in the figure, in a way that the movement periods would appear as thin lines. 
 

 
Fig. 12. Signal used by the fault detection algorithm. 
 
A new signal can be composed exclusively of those time intervals where the point 
mechanism is actually working. Looking at Fig. 12 it can be devised that even movements 
(normal to reverse move) have a slightly different pattern than uneven movements (reverse 
to normal). Therefore, two signals may be formed by concatenating the normal to reverse 
movements of the point mechanism in one hand, and the reverse to normal moves in the 
other. Fig. 13 shows one portion of the normal to reverse signal. 
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Fig. 13. Signal obtained by concatenation of portions of data where the point mechanism is 
working. 
 
As it is clearly shown in Figure 13, the signal to analyse has strong periodicity and can be 
then modelled and forecast by a statistical model capable of replicating such behaviour. The 
period of the signal is exactly the time it takes to the point mechanism to produce a 
complete movement. Two difficulties arise that should be considered by the model: (i) the 
sampling interval of the data is not constant, it has small variations produced by the 
measurement equipment that should be taken into account; and (ii) the frequency or period 
of the waves changes over time. As a matter of fact, the changes of the period may be 
considered as a measurement of the wear in the system, as illustrated in Figure 14. 
 

 
Fig. 14. Time the point mechanism spend to produce movements in normal to reverse 
direction (solid) and reverse to normal (dotted). 
 
Fig. 14 shows the 380 time varying periods (or time to produce a complete movement of the 
mechanism) for the "normal to reverse" and "reverse to normal" signals (the first five data 
points corresponds to the signal shown in Fig. 13) that constitutes the full data set in the 
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direction (solid) and reverse to normal (dotted). 
 
Fig. 14 shows the 380 time varying periods (or time to produce a complete movement of the 
mechanism) for the "normal to reverse" and "reverse to normal" signals (the first five data 
points corresponds to the signal shown in Fig. 13) that constitutes the full data set in the 
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later case study. There were several sudden increases of the period at some points in time 
due to faults that have been removed from the figure, in order to avoid distortions of the 
vertical axis. The time axis is on an irregular sampling interval, in order to take into account 
the moment at which each movement has taken place. It is clear that the period is lower at 
the beginning of the sample with a rapid increase that tends to come down from the middle 
of the sample. A similar behaviour is devised in the reverse to normal signal.  
 
The fault detection algorithm proposed here in essence would be composed of the following 
steps: 

1. Forecasting next period on the basis of the signal in Figure 14. 
2. Forecasting the signal in Figure 13 by a Dynamic Harmonic Regression model that 

uses the period forecast of the previous step. 
Assessing forecasts by comparing the forecast of step 2 with the actual signal coming from 
the sensors installed in the point mechanism. If the forecasts generated in step 2 are too bad 
(measured by the variance of the forecast error), a fault is detected. The way to assess 
whether a failure has been produced is by checking the variance of the forecast error above a 
certain level fixed for each specific point mechanism. 

 
6.1. Step 1: Modeling and forecasting the period 
Two procedures have been considered: i) VARMA models in discrete time with two signals 
(the periods for normal to reverse and reverse to normal) modeled jointly; ii) once again a 
univariate local level model plus noise, but in continuous time. 

 
6.1.1. VARMA model 
The VARMA (Vector Auto-Regressive Moving-Average) models (see e.g. [1], [18] and [25]) 
are natural extensions of the ARIMA (Auto-Regressive Integrated Moving Average) models 
to the multivariate case. One of the simplest but general formulations of a VARMA(p, q) 
model is 
 
 qtqttptptt   vΘvΘvPφPφP 1111          (4) 

where  Tttt pp ,2,1P  is a bivariate signal; tv  is a bivariate white noise, i.e. purely 

random signal with no serial correlation and covariance matrix R ; and iφ  ( pi ,,2,1  ) 

and jΘ  ( qj ,,2,1  ) are squared blocks of coefficients of dimension 22 . 

 
VARMA models admit several SS representation according to equation (1). The one prefered 
here is (with  qpr ,max ) 
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The model orders p  and q  can be identified using multivariate autocorrelation and 
multivariate partial autocorrelation functions. The block parameters, as well as the 
covariance matrix of the noise, are estimated using Maximum Likelihood. Forecasts are then 
computed on the basis of the actual data and the estimates of the model parameters, once 
the model passes a validation process. One of the most important validation tests is the 
absence of serial correlation in the perturbation vector noise tv  (see e.g. [1], [18] and [25]). 
 

It is vital that the signals tP  on which all the VARMA methodology is applied should have 
stationary mean and variance. 

 
6.1.2. Local level model in continuous time 
The model used for forecasting the period of the next movement (in a particular direction) in 
this case represents the observation, i.e. the period drifts over time, as wear varies simply 
because of usage (increases) or by preventive maintenance (decreases). Since the point 
movements are not produced at equally spaced intervals of time, a continuous-time model 
should be used. Formally, the continuous time SS model is given by 
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where  tP  stands for the time varying period that is decomposed into the local level  tl  
and a noise term  tv  assumed to be white Gaussian noise;  tw1  and  tw2  are 
independent white noises. 
 
One way to treat the continuous system above is by finding a discrete-time SS equivalent to it 
(see e.g. Harvey 1989) [15], by means of the solution to the differential equation implied by the 
system. A change in notation is necessary to convert the system to discrete-time: denote the k
th observation of the series  kz  (for 1,2, ,k N  ) and assume that this observation is made at 

time tk. Let 00 t  and 1 kkk tt , i.e. the time interval between two consecutive 
measurements. System (3) may be represented by the discrete-time SS system in (5). 
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The model orders p  and q  can be identified using multivariate autocorrelation and 
multivariate partial autocorrelation functions. The block parameters, as well as the 
covariance matrix of the noise, are estimated using Maximum Likelihood. Forecasts are then 
computed on the basis of the actual data and the estimates of the model parameters, once 
the model passes a validation process. One of the most important validation tests is the 
absence of serial correlation in the perturbation vector noise tv  (see e.g. [1], [18] and [25]). 
 

It is vital that the signals tP  on which all the VARMA methodology is applied should have 
stationary mean and variance. 

 
6.1.2. Local level model in continuous time 
The model used for forecasting the period of the next movement (in a particular direction) in 
this case represents the observation, i.e. the period drifts over time, as wear varies simply 
because of usage (increases) or by preventive maintenance (decreases). Since the point 
movements are not produced at equally spaced intervals of time, a continuous-time model 
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where  tP  stands for the time varying period that is decomposed into the local level  tl  
and a noise term  tv  assumed to be white Gaussian noise;  tw1  and  tw2  are 
independent white noises. 
 
One way to treat the continuous system above is by finding a discrete-time SS equivalent to it 
(see e.g. Harvey 1989) [15], by means of the solution to the differential equation implied by the 
system. A change in notation is necessary to convert the system to discrete-time: denote the k
th observation of the series  kz  (for 1,2, ,k N  ) and assume that this observation is made at 

time tk. Let 00 t  and 1 kkk tt , i.e. the time interval between two consecutive 
measurements. System (3) may be represented by the discrete-time SS system in (5). 
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In order to make systems (6) and (5) equivalent, the variances of observational noise is 
unchanged as R , but the covariance matrix of the process noise in the state equations 
becomes 
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(see Harvey 1989, page 487) [15]. If all the data are sampled at regular time intervals, then 
 k  and the noise variances are all constant; but if the data is irregularly spaced, as it is 

in our case, k  would take into account the irregularities of the sampling process. It is worth 
noting that the continuous-time model (5) involved system matrices that are all constant and 
the state noises were all independent of each other with constant variances. Beware that 
system (6) is written in form (1) and is the only case in this chapter that involves a time 
variable transition matrix kΦ  and time variable variance noises that are correlated to each 
other according to the expression of kQ . 

 
6.2. Step 2: Modeling and forecasting the signal 
Once the period or the time length of the next movement of the point mechanism is forecast 
by any of the models in section 5.1., it is necessary to produce the forecast of the signal itself 
for the next occurrence, in order to produce what should be expected in case of no faults. 
 
This is done by a Dynamic Harmonic Regression model (DHR) set up as described below. 
This model is very convenient in the present situation because it can easily handle the time-
varying nature of the movement period. Obviously, the model can also be written in the 
form of a SS system as in (1). 
 
The formula of a DHR with the required properties is shown in equation (7). 
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Here, tkz ,  is the periodic signal in which the subscript k indicates whether the normal to 

reverse ( 1k ) or the reverse to normal ( 2k ) signals are being considered; M  is the 
number of harmonics that should be included in the regression to achieve an adequate 
representation of the signal tkz , ; kia ,  and kib ,  are M2  parameters to be estimated, 

representing the amplitudes of the co-sinusoidal waves; tki ,,  are frequencies at which the 

 

sinusoids are evaluated, with tktki pi ,,, 2    for Mi ,,2,1   and 2,tkpM   and 

2,1k ; 
tke ,
 is a pure random white noise with constant variance. Separate Harmonic 

Regression models are used for the normal to reverse and reverse to normal signals. 
 
There are two key points for the model (7) to be an adequate representation of tkz , : 

1. tkp ,  and tki ,,  have time varying period/frequency. The nature of such variation is 

dependent on the signal itself. For one full movement of the point mechanism tkp ,  

is maintained constant and is equal to the time it takes to produce the full 
movement. This value will be different in the next movement and is modified 
accordingly.  

2. The time index *t  is a variable linked to tkp ,  that varies from 0 to tkp ,  in each 

movement. Therefore, this variable is reset to 0 as soon as a movement finishes (see 
Fig. 15. 

 

 
Fig. 15. Two full movements of the point mechanism, with their associated period and time 
index according to model (7). 
 
Model (7) is then a regression of a signal on a set of deterministic functions of time and 
therefore all the standard regression theory can be applied, in particular estimates and 
forecasts can be made quickly. Model (7) have been generalized further by allowing 
parameters kia ,  and kib ,  to be time varying, producing a more flexible model, known as a 

Dynamic Harmonic Regression (DHR; see [21] [26]), but such complications are not found 
necessary in the case study described later.  

 
6.3. The full fault detection algorithm 
The full algorithm for fault detection comprises the following steps: 

1. Determine which historical data to use. In the later case study the previous 50 free-
from-faults movements of the point mechanism are used to estimate models (4) (5) 
and (7) at each new movement. 
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(see Harvey 1989, page 487) [15]. If all the data are sampled at regular time intervals, then 
 k  and the noise variances are all constant; but if the data is irregularly spaced, as it is 
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2. A point forecast of the time that it would take the next movement is produced by 
means of model (4) or (5), together with its 95% confidence interval. In this way, a 
range of lengths or periods of the next movement are considered. Then, a different 
forecast of the signal tkz ,  is produced for each period forecast in the previous step. 

Following this a full set of forecasts become available for a time horizon long 
enough to cover a full movement of the point mechanism. 

3. The new data points measured by the system are compared to all the forecasts 
produced in the previous step. The forecast closer to the actual data measured by 
the minimum of the standard deviation of the error is then considered to be the 
best forecast of the signal. 

4. If the best forecast is systematically bad, a fault has occurred and the system issues 
a warning. If the best errors are always low, no faults are detected. The boundary is 
measured in terms of standard deviation of the errors and such a value has to be 
adjusted for each particular point mechanism.  

5. If no fault is detected, then the data of the latest movement is incorporated into the 
historical data to be used next time, the oldest movement data being dropped. 
However, if a fault is detected, the historical data used to perform step 1 for the 
next movement is unchanged for the next movement.  

 
The algorithm can be used in on-line or off-line contexts. For on-line use, step 3 can be 
repeated as each measurement data point becomes available. For off-line use the algorithm 
is applied to all the data collected for a full movement of the mechanism. 
 
The system requires a couple of values to be fixed by experimentation, namely the alarm 
limit that can be calculated from the standard deviation of signal tkz , , and also the number 

of harmonics to include in the Harmonic Regression ( M  in model (7)). Experiments carried 
out on logged data have been performed to set these two design parameters of the 
algorithm. The final setting for the standard deviation is 0.4 for the standard deviation, 
found to give the best discrimination between faulty and non-faulty events; and 62M  
harmonics for model (7) produces accurate fit and forecasts to the signal. 

 
6.4. Results 
Standard identification techniques on VARMA models suggested a VARMA(0, 1). 
Estimation of such a model for the full data set was 
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The correlation between the components of the noise vector is 0.3. The relation between the 
output variables can be more easily seen if the model is written in the form of difference 
equations, 
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The correlation of each variable with its own past is more important that the relation to each 
other, judging by the coefficients relating both variables and the correlation of noises. 
Nevertheless, the relation between them is significant and should be taken into account in 
order to forecast the output variables. The model is adequate in the sense that no serial 
correlation left in the residuals. 
 
One example is shown in Fig. 16. The top panels show the forecast of the periods to use in 
the DHR models, with the 95% confidence intervals. Such period is the expected length of 
the next movement, that is the value introduced into the DHR model to forecast the signal 
itself. The forecast of the signal is shown in the bottom panels, where the dotted lines are the 
actual values and the solid lines are the final forecast of the system. It is clear that the left 
case is free from any fault, since the forecast matches perfectly the actual data, while the 
expected behavior in the right panel is very different to the actual data, implying that a fault 
has occurred. 
 

 

 
Fig. 16. Left panels shows results for fault free data. Right panels show results for a faulty 
signal. Panels in the two first rows show the forecast of VARMA model (from the vertical 
line on); solid lines show the actual periods and the forecast (smoother line). Panels in 
bottom row show the forecast of the DHR model with the period forecast in the top panels; 
solid lines are the actual data, dashed lines are the forecast. 
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2. A point forecast of the time that it would take the next movement is produced by 
means of model (4) or (5), together with its 95% confidence interval. In this way, a 
range of lengths or periods of the next movement are considered. Then, a different 
forecast of the signal tkz ,  is produced for each period forecast in the previous step. 

Following this a full set of forecasts become available for a time horizon long 
enough to cover a full movement of the point mechanism. 

3. The new data points measured by the system are compared to all the forecasts 
produced in the previous step. The forecast closer to the actual data measured by 
the minimum of the standard deviation of the error is then considered to be the 
best forecast of the signal. 

4. If the best forecast is systematically bad, a fault has occurred and the system issues 
a warning. If the best errors are always low, no faults are detected. The boundary is 
measured in terms of standard deviation of the errors and such a value has to be 
adjusted for each particular point mechanism.  

5. If no fault is detected, then the data of the latest movement is incorporated into the 
historical data to be used next time, the oldest movement data being dropped. 
However, if a fault is detected, the historical data used to perform step 1 for the 
next movement is unchanged for the next movement.  

 
The algorithm can be used in on-line or off-line contexts. For on-line use, step 3 can be 
repeated as each measurement data point becomes available. For off-line use the algorithm 
is applied to all the data collected for a full movement of the mechanism. 
 
The system requires a couple of values to be fixed by experimentation, namely the alarm 
limit that can be calculated from the standard deviation of signal tkz , , and also the number 

of harmonics to include in the Harmonic Regression ( M  in model (7)). Experiments carried 
out on logged data have been performed to set these two design parameters of the 
algorithm. The final setting for the standard deviation is 0.4 for the standard deviation, 
found to give the best discrimination between faulty and non-faulty events; and 62M  
harmonics for model (7) produces accurate fit and forecasts to the signal. 

 
6.4. Results 
Standard identification techniques on VARMA models suggested a VARMA(0, 1). 
Estimation of such a model for the full data set was 
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The correlation between the components of the noise vector is 0.3. The relation between the 
output variables can be more easily seen if the model is written in the form of difference 
equations, 
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The correlation of each variable with its own past is more important that the relation to each 
other, judging by the coefficients relating both variables and the correlation of noises. 
Nevertheless, the relation between them is significant and should be taken into account in 
order to forecast the output variables. The model is adequate in the sense that no serial 
correlation left in the residuals. 
 
One example is shown in Fig. 16. The top panels show the forecast of the periods to use in 
the DHR models, with the 95% confidence intervals. Such period is the expected length of 
the next movement, that is the value introduced into the DHR model to forecast the signal 
itself. The forecast of the signal is shown in the bottom panels, where the dotted lines are the 
actual values and the solid lines are the final forecast of the system. It is clear that the left 
case is free from any fault, since the forecast matches perfectly the actual data, while the 
expected behavior in the right panel is very different to the actual data, implying that a fault 
has occurred. 
 

 

 
Fig. 16. Left panels shows results for fault free data. Right panels show results for a faulty 
signal. Panels in the two first rows show the forecast of VARMA model (from the vertical 
line on); solid lines show the actual periods and the forecast (smoother line). Panels in 
bottom row show the forecast of the DHR model with the period forecast in the top panels; 
solid lines are the actual data, dashed lines are the forecast. 
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Similar results are achieved when the local level model set up in continuous time is used 
instead (see Fig. 17).  
 

 
Fig. 17. Left panels shows results for fault free data. Right panels show results for a faulty 
signal. Panels in the first row show the forecast of the local level model (from the vertical 
line on); solid lines show the actual periods and the forecast (smoother line). Panels in 
bottom row show the forecast of the DHR model with the period forecast in the top panels; 
solid lines are the actual data, dashed lines are the forecast. 
 
This algorithm was applied to the full dataset (380 movements in either directions). From 
normal to reverse movements 8 were abnormal due to faults similar to the one shown in 
Figure 17. No faults were registered in the reverse to normal direction data. Selecting a 
standard deviation of 0.4 as the boundary of faults detection we get that all the faults were 
detected and not a single false alarm was produced in any of the cases. 
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Similar results are achieved when the local level model set up in continuous time is used 
instead (see Fig. 17).  
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bottom row show the forecast of the DHR model with the period forecast in the top panels; 
solid lines are the actual data, dashed lines are the forecast. 
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Figure 17. No faults were registered in the reverse to normal direction data. Selecting a 
standard deviation of 0.4 as the boundary of faults detection we get that all the faults were 
detected and not a single false alarm was produced in any of the cases. 

 
7. References 

[1] Box G.E.P., Jenkins G.M., Reinsel G.C. 1994. Time Series Analysis, Forecasting and 
Control. Englewood Cliffs, New Jersey, Prentice Hall International. 

[2] Bryson A.E., Ho Y.C. (1969). Applied optimal control, optimization, estimation and 
control. Waltham, Mass.: Blaisdell Publising Company. 

[3] Casals J., Jerez M., Sotoca S., Exact Smoothing for stationary and non-stationary time 
series, International Journal of Forecasting, 16 (2000), 59-69. 

[4] CENELEC EN50170 (2002), General purpose field communication system. 
[5] de Jong P., Stable algorithms for the state space model, Journal of Time Series 

Analysis, 12, (2)(1991) 143-157. 
[6] de Jong P., The likelihood for a state space model, Biometrika, 75, (1)(1988) 165-169. 
[7] Durbin J., Koopman S.J., Time series analysis by state space methods. Oxford 

University Press, Oxford, 2001. 
[8] García Márquez F.P., Schmid F. and Collado J.C., 2003. “Wear Assessment Employing 

Remote Condition Monitoring: A Case Study”. Wear, Vol. 255, Issue 7-12, pp. 1209-1220. 

0 0.5 1 1.5 2
-6

-4

-2

0

Forecast of z(t)

Time (seconds)

z(
t)

100 120 140 160 180 200 220 240 260 280

1.95

2

2.05

2.1

Time (seconds/1000)

P(
t)

Forecast of P(t)

200 250 300 350 400 450 500 550

2

2.1

2.2

Time (seconds/1000)

P(
t)

Forecast of P(t)

0 0.5 1 1.5 2 2.5 3 3.5 4
-6

-4

-2

0

Forecast of z(t)

Time (seconds)

z(
t)

 

[9] García Márquez F.P., Schmid F. and Conde J.C., 2003. A Reliability Centered Approach 
to Remote Condition Monitoring. A Railway Points Case Study. Reliability 
Engineering and System Safety, Vol. 80 No. 1, pp 33-40. 

[10] Garcia Marquez, F.P and Pedregal D.J. (2004). Failure Analysis and Diagnostics for 
Railway Trackside Equipment. Engineering Failure Analysis, Vol. 14(8), pp. 1411-1426. 

[11] Garcia Marquez, F.P and Pedregal D.J. (2007). Applied RCM2 Algorithms Based on 
Statistical Methods. International Journal of Automation and Computing, Vol. 4, pp. 109-116.  

[12] Garcia Marquez, F.P and Schmid F. (2007). Digital Filter Based Approach to the 
Remote Condition Monitoring of Railway Turnouts. Reliability Engineering & System 
Safety, Vol. 92, pp. 830-840. 

[13]  Garcia Marquez, F.P, Pedregal D.J. and Roberts C. (2010). Time Series Methods 
Applied to Failure Prediction and Detection. Reliability Engineering & System Safety. 
Vol. 95(6), pp. 698-703. 

[14] Garcia Marquez, F.P, Pedregal D.J.and Schmid F. (2007). Unobserved Component 
Models Applied To The Assessment Of Wear In Railway Points: A Case Study. 
European Journal of Operational Research, Vol. 176, pp. 1703-1702. 

[15] Harvey, A.C. (1989). Forecasting structural time series models and the Kalman filter. 
Cambridge: Cambridge University Press. 

[16] Kalman R.E., A new approach to linear filtering and prediction problems, ASME 
Trans., Journal Basic Eng., 83-D (1960) 95-108. 

[17] Koopman S.J., Disturbance smoother for state-space models, Biometrika, 76 (1993) 65-79. 
[18] Lütkepohl H. 1991. Introduction to Multiple Time Series Analysis. Berlin, Springer-

Verlag. 
[19] Pedregal D.J., Garcia Marquez, F.P and Schmid F. (2004). Predictive Maintenance of 

Railway Systems Based on Unobserved Components Model. Reliability Engineering & 
System Safety, Vol. 8(1), pp. 53-62.  

[20] Pedregal D.J., Garcia Marquez, F.P, Roberts C. (2009). An Algorithmic Approach for 
Maintenance Management". Annals of Operations Research. Vol. 166, pp. 109-124. 

[21] Pedregal D.J., Young P.C., Statistical approaches to modelling and forecasting time 
series. In Clements M., Hendry D. (eds.), Companion to Economic Forecasting, 
Blackwell Publishers, 2002. 

[22] Proctor P., Infrastructure Risk Modelling – Electric Machine Point Operating 
Mechanism: HW Type. EE&CS Railtrack H.Q. 2000. 

[23] Roberts, C., Dassanayake, H.P.B., Lehrasab, N., Goodman, C.J. (2002). Distributed 
quantitative and qualitative fault diagnosis: railway junction case study. Control 
Engineering Practice, 10, 419-429. 

[24] Schweppe F., Evaluation of likelihood function for Gaussian signals, I.E.E.E. Trans. on 
Inf. Theory, 11 (1965) 61-70. 

[25] Tiao G.C., Box G.E.P., 1981, Modelling multiple time series with applications, Journal 
of the American Statistical Association, 76, 802-816. 

[26] Young P.C., Pedregal D.J., Tych W., Dynamic harmonic regression, Journal of 
Forecasting, 18, (1999) 369-394. 

[27] Young P.C., Recursive estimation and time-series analysis, Berlin: Springer-Verlag, 1984. 
  

 





The application of spectral representations in coordinates  
of complex frequency for digital filter analysis and synthesis 27

The application of spectral representations in coordinates of complex 
frequency for digital filter analysis and synthesis

Alexey Mokeev

X 
 

The application of spectral representations  
in coordinates of complex frequency for  

digital filter analysis and synthesis  
 

Alexey Mokeev 
Northern (Arctic) Federal University 

Russian Federation 

 
1. Introduction     

The suitability of using one or another spectral representation depends on the type of signal 
to be analysed and problem to be solved, etc. (Kharkevich, 1960, Jenkins, 1969 ). Thus, the 
spectral representations, based on Fourier transform, are widely applied for linear circuit 
and frequency filter analysis for sinusoidal and periodical input signals (Siebert, 1986, 
Atabekov, 1978). However, using these spectral representations for a filter analysis of non-
stationary signals would not be so simple and visually advantageous (Kharkevich, 1960).  
In the majority of cases input signals of automation and measurement devices have an 
analogue nature, and can be represented as a set of semi-infinite or finite damped oscillatory 
components.  In the case of IIR filter impulse functions the representation uses this set of 
damped oscillatory components. Impulse functions of FIR filters representation are also 
based on this set of damped oscillatory components, but with the difference of a finite 
duration of the impulse functions. Thus, the generalized signal and impulse function of 
analog filters have similar mathematical expressions. In this case it is reasonable to use the 
Laplace transform instead of the Fourier transform, because the Laplace transform operates 
with complex frequency, and its damped oscillatory component is a base function of the 
transform (Mokeev, 2006, 2007, 2009a).   
The application of the spectral representations based on Laplace transform, or in other 
words, the spectral representations in complex frequency coordinates, enables to simplify 
significantly calculations of stationary and non-stationary modes and get efficient methods 
of filter synthesis (Mokeev, 2006). It also extends the application area of the complex 
amplitude method, including use of this method for analysis of stationary and non-
stationary modes of analog and digital filters (Mokeev, 2007, 2008b, 2009a). 

 
2. Mathematical description of filters  

2.1 Mathematical description of input signals   
It should be considered in frequency filter simulation, that input signals of digital 
automation and measurement devices have an analogue nature. Therefore, an analog filter-

2
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prototype is theoretically perfect. In the majority of cases filter signals and impulse functions 
can be described by a set of semi-infinite or finite damped oscillatory components.  
The mathematical expression of the generalized complex continuous and discrete input 
signal can be briefly represented in the following way 

      
'

T 'T( )
ttx t e e

P tP t CCX X ,  (1) 

         T 'T '( ) , ,x k Z k Z kX P C K X P C K , (2) 

where        
  njmn nN N

X X eX  and        
   '( )' ' n n np t t

n nN N
X X eX – are complex amplitude 

vectors of two input signal components,        n n nN Np jp  –  is complex frequency 

vector,   n Ntt ,    
' '

n N
tt ,   n NKK ,    

' '
n N

KK –  are vectors, which elements define a 

time delay of input signal components,   diagP p – is square matrix N×N with the vector  

p  on the main diagonal, C –  is unit vector, T –  is discrete sampling step,   , pkTZ p k e . 
The use of the complex generalized input signal (1) enables to get more compact form of the 
signal expression. The transition to real signal 

   ( ) Re ( )x t x t ,   ( ) Re ( )x k x k .  

When  'X 0  и t 0  ( K 0 ), the input signal is represented by a set of continuous 
(discrete) semi-infinite damped oscillatory components.  
Particular cases of n-th damped oscillatory component at 0nt    

 ( ) np t
n nx t X e  ,    ( ) Re ( ) cosntmn n n n nx t x t X e t     ,  

are semi-infinite sinusoidal ( n np j  ) and constant ( 0np  ) components, exponential 
component ( n np   ), component in the form of a delta function 
( mn nX   , n np   , n  ). 
Compound signals of different forms, including compound periodical and quasi-periodic 
signals, non-stationary signals and signals with compound envelopes can be synthesized on 
the basis of the collection of components mentioned above. 
The most frequently used semi-infinite or finite signals with compound envelopes in radio 
engineering are described by the following model 

    1( ) p tx t X t e ,   ( ) Re ( )x t x t ,  

or in general case it would be   

    T( ) tx t t e  P tCX ,   ( ) Re ( )x t x t . (3) 

Examples of signal mathematical expression, represented by mathematical model (3) and 
model (1), are shown in the Table 1. In this case signal models (1) and (3) enable to describe 
not only radio signal (item 1 and 2), but real signals of measurement and automation 
devices. The example for a signal of intellectual electronic devices of electric power systems 
as the set of sequentially adjacent finite component groups, each one of  those corresponds 
to defined operation mode of the electric power system, is represented in the item 3, Table 1. 

 

№ Mathematical description  Signal graph 
1.     11 tX t e ,   1 1p j ,  1 20 ,   1 314  

   T1 1X ,    T
1 2p pp , 

 1 1p j ,     2 1 1p j  
 

0 0.1 0.2 0.3
1

0

1

 
2.      1

11 cos(0, 2 )tX t e t ,  1 1p j ,  
 1 20 ,   1 314  

         
 T0,5 0,5 0,50, 5 0,5j j je e eX ,  

         T
1 1 1 1 11, 2 0,8j j jp  

0 0.1 0.2 0.3

0

 
3.                  1 1 1 1 2 2( ) ( ) ( )

1 1 2 21( ) 1( ) 1( )b t b t b tX t t t e k e t k e ,  
 1 1p j ,   1 1

1
bk e ,    1 2 1( )

2
bk e  

     T 0.5
21 1 1 jk eX ,     T 0.5'

11 0 0 jk eX ,   

  T
1 2 1 3p p p pp ,      T

1 2 20t , 

      T'
1 2t  

0 0.1 0.2 0.3
1

0

1

 
 1 10 ,   2 20 ,  1 314 ,  1 0,1 ,   2 0,02 ,  1 1p j ,    2 1 1p j ,    3 1 1p j  

Table 1. Input signal models  
 
№ Mathematical description  Signal graph 
1. rectangular pulse  

   
1( ) 1( ) 1( )X t t t ,  1 0p ,  1 0.02 ,  

  1X ,    ' 1X ,    0p ,   0t ,   '
1t

 rectangular radio pulse  
   

1( ) 1( ) 1( )X t t t ,   1 1p j ,  1 1571
 

  1X ,    ' 1X ,    1jp ,   0t ,   '
1t  

0 0.01 0.02
1

0

1

 

2. triangular pulse            
1 1 2 2( ) 1( ) 2( )1( ) ( )1( )X t t t t t t t ,  

1 0p ,  1 0,01 ,  2 0,02
 

      
  T' 1 1 100X X ,     T0p ,  0  

   T
10t ,     T'

1 2t  0 0.01 0.02
1

0

1

 
3. sine pulse          

2 2 1 1( ) sin( ) 1( ) sin ( ) 1( )X t t t t t , 1 0p , 
 1 0,02 ,  2 157,1 ,

 
  1X ,   ' 1X ,    2jp ,   0t ,   '

1t
  

0 0.01 0.02
1

0

1

 
4. exponential pulse  

   
 1

T
1 1 eX ,     150 ,  1 0,01 ,  2 0,02 , 

       
 2 11

T2' 1e eX ,      T0p ,   

   T
10 0t ,      T'

1 2 2t
 

0 0.01 0.02

0

 
Table 2. Video pulse and radio pulse models  
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prototype is theoretically perfect. In the majority of cases filter signals and impulse functions 
can be described by a set of semi-infinite or finite damped oscillatory components.  
The mathematical expression of the generalized complex continuous and discrete input 
signal can be briefly represented in the following way 

      
'

T 'T( )
ttx t e e

P tP t CCX X ,  (1) 

         T 'T '( ) , ,x k Z k Z kX P C K X P C K , (2) 

where        
  njmn nN N

X X eX  and        
   '( )' ' n n np t t

n nN N
X X eX – are complex amplitude 

vectors of two input signal components,        n n nN Np jp  –  is complex frequency 

vector,   n Ntt ,    
' '

n N
tt ,   n NKK ,    

' '
n N

KK –  are vectors, which elements define a 

time delay of input signal components,   diagP p – is square matrix N×N with the vector  

p  on the main diagonal, C –  is unit vector, T –  is discrete sampling step,   , pkTZ p k e . 
The use of the complex generalized input signal (1) enables to get more compact form of the 
signal expression. The transition to real signal 

   ( ) Re ( )x t x t ,   ( ) Re ( )x k x k .  

When  'X 0  и t 0  ( K 0 ), the input signal is represented by a set of continuous 
(discrete) semi-infinite damped oscillatory components.  
Particular cases of n-th damped oscillatory component at 0nt    

 ( ) np t
n nx t X e  ,    ( ) Re ( ) cosntmn n n n nx t x t X e t     ,  

are semi-infinite sinusoidal ( n np j  ) and constant ( 0np  ) components, exponential 
component ( n np   ), component in the form of a delta function 
( mn nX   , n np   , n  ). 
Compound signals of different forms, including compound periodical and quasi-periodic 
signals, non-stationary signals and signals with compound envelopes can be synthesized on 
the basis of the collection of components mentioned above. 
The most frequently used semi-infinite or finite signals with compound envelopes in radio 
engineering are described by the following model 

    1( ) p tx t X t e ,   ( ) Re ( )x t x t ,  

or in general case it would be   

    T( ) tx t t e  P tCX ,   ( ) Re ( )x t x t . (3) 

Examples of signal mathematical expression, represented by mathematical model (3) and 
model (1), are shown in the Table 1. In this case signal models (1) and (3) enable to describe 
not only radio signal (item 1 and 2), but real signals of measurement and automation 
devices. The example for a signal of intellectual electronic devices of electric power systems 
as the set of sequentially adjacent finite component groups, each one of  those corresponds 
to defined operation mode of the electric power system, is represented in the item 3, Table 1. 

 

№ Mathematical description  Signal graph 
1.     11 tX t e ,   1 1p j ,  1 20 ,   1 314  

   T1 1X ,    T
1 2p pp , 

 1 1p j ,     2 1 1p j  
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0

1

 
2.      1
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0
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1
bk e ,    1 2 1( )

2
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     T 0.5
21 1 1 jk eX ,     T 0.5'

11 0 0 jk eX ,   

  T
1 2 1 3p p p pp ,      T

1 2 20t , 

      T'
1 2t  
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 1 10 ,   2 20 ,  1 314 ,  1 0,1 ,   2 0,02 ,  1 1p j ,    2 1 1p j ,    3 1 1p j  

Table 1. Input signal models  
 
№ Mathematical description  Signal graph 
1. rectangular pulse  

   
1( ) 1( ) 1( )X t t t ,  1 0p ,  1 0.02 ,  

  1X ,    ' 1X ,    0p ,   0t ,   '
1t

 rectangular radio pulse  
   

1( ) 1( ) 1( )X t t t ,   1 1p j ,  1 1571
 

  1X ,    ' 1X ,    1jp ,   0t ,   '
1t  

0 0.01 0.02
1

0

1

 

2. triangular pulse            
1 1 2 2( ) 1( ) 2( )1( ) ( )1( )X t t t t t t t ,  

1 0p ,  1 0,01 ,  2 0,02
 

      
  T' 1 1 100X X ,     T0p ,  0  

   T
10t ,     T'

1 2t  0 0.01 0.02
1

0

1

 
3. sine pulse          

2 2 1 1( ) sin( ) 1( ) sin ( ) 1( )X t t t t t , 1 0p , 
 1 0,02 ,  2 157,1 ,

 
  1X ,   ' 1X ,    2jp ,   0t ,   '

1t
  

0 0.01 0.02
1

0

1

 
4. exponential pulse  

   
 1

T
1 1 eX ,     150 ,  1 0,01 ,  2 0,02 , 

       
 2 11

T2' 1e eX ,      T0p ,   

   T
10 0t ,      T'

1 2 2t
 

0 0.01 0.02

0

 
Table 2. Video pulse and radio pulse models  
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The model (1) also makes it possible to describe the majority of impulse signals, which are 
widely applicable in radio engineering. Examples of some impulse signals are shown it the 
Table 2. Therefore, the generalized mathematical model (1) enables to describe a big variety 
of semi-infinite or finite signals. 
As it is shown below, the compound finite signal representations in the form of the set of 
damped oscillatory components significantly simplifies the problem solving of the signal 
passage analysis through the frequency filters, by using the analysis methods based on signal 
and filter spectral representations in complex frequency coordinates (Mokeev, 2007, 2008b).  

 
2.2 Mathematical description of filters  
Analysis and synthesis of filters of digital automation and measurement devices are 
primarily carried out for analog filter-prototypes. The transition to digital filters is 
implemented by using the known synthesis methods. However, this method can only be 
applied for IIR filters, as a pure analog FIR filter does not exist because of complications of 
its realization. Nevertheless, implementation of this type of analog filters is rational 
exclusively as they are considered “perfect” filters for analog signal processing and as filter-
prototypes for digital FIR filters (Mokeev, 2007, 2008b). 
When solving problems of digital filters analysis and synthesis, one will not take into 
account the AD converter errors, including the errors due to signal amplitude quantization. 
This gives the opportunity to use simpler discrete models instead of digital signal and filter 
models (Ifeachor, 2002, Smith, 2002). These types of errors are only taken into consideration 
during the final design phase of digital filters. In case of DSP with high digit capacity, these 
types of errors are not taken into account at all. 
The mathematical description of analog filter-prototypes and digital filters can be expressed 
with the following generalized forms of impulse functions:  

     T 'T( ) ttg t e eQq C TG G ,   ( ) Re ( )g t g t , (4) 

        T 'T( ) , ,g k Z k Z kG q G Q C N ,   ( ) Re ( )g k g k . (5) 

Therefore, for analog and digital filter description it is sufficient to use vectors of complex 
amplitudes of two parts of complex function:  

       
  mj

m mM M
G k eG  and       

  ' ' m mT
m mM M

G G eG , vector of complex frequencies 

       m m mM Mjwq  and vectors    m MTT  и   m MNN , which define the duration 

(length) of the filter pulse function components;   diagQ q – is a square matrix M×M with 
the vector q  on the main diagonal. 
Adhering to the mathematical description of the FIR filter impulse function mentioned 
above (4), the IIR filter impulse functions are a special case of analogous functions of FIR 
filters at   'G 0 .   
Recording the mathematical description of filters in such a complex form has advantages: 
firstly, the expression density, and secondly, correlation to two filters at the same time, 
which allows for ensured calculation of instant spectral density module and phase on given 
complex frequency (Smith, 2002). 
The transfer function of the filter (4) with the complex coefficients is  

 

    
          
 T 'T1 1( ) mpT

m mM M

K p e
p p

G G , (6) 

The transfer function ( )K p  is an expression of the complex impulse function (6), therefore it 
has along with the complex variable p  complex coefficients, defined by the vectors 
 ,G  'G and q . A filter with the transfer function ( )K p  correlates with two ordinary filters, 

which transfer functions are  Re ( )K p  and  Im ( )K p . In this case the extraction of the real 
and imaginary parts of ( )K p  can be applied only to complex coefficients of the transfer 
function and has no relevance for the complex variable p . 
As it appears from the input signal models (1) and filter impulse functions (4), there is a 
similarity between their expressions of time and frequency domains. Filter impulse 
functions based on the model (4) may have a compound form, including the analogous ones 
referred to above in Tables 1 and 2.  
The similarity of mathematical signal and filter expressions: firstly, allow to use one 
compact form for their expression as a set of complex amplitudes, complex frequencies and 
temporary parameters. Secondly, it significantly simplifies solving problems of 
mathematical simulation and frequency filter analysis.  
The digital filter description (5) can be considered as a discretization result of analog filter 
impulse function (4). Another known transition (synthesis) methods can be also applied, if 
they are revised for use with analogue filters-prototypes with a finite-impulse response 
(Mokeev, 2008b).   

 
2.3 Methods of the transition from an analog FIR filter to a digital filter  
The mathematical description of digital FIR filters at  1M  is given in the Table 3, these 
filters were obtained on the basis of the analog FIR filter (item 0) by use of three transformed 
known synthesis methods: the discrete sampling method of the differential equation (item 
1), as well as the method of invariant impulse responses (item 2) and the method of bilinear 
transformation (item 3). 
 
№ Differential or difference equation  Impulse function Transfer or system function  

0.    
   '

1 1 1 1
( ) ( ) ( ) ( )dy t y t G x t G x t
dt  

    1 11 ( )'
1 1( ) ttg t G e G e

 
   


  1'

1 1
1

1( ) pK p G G e
p

 
1.      

11 1 2k k k k Ny y G x G x      1
11 1 11 1 11

k Nk
kg k G z G z   111

1 2
11

( ) Nk zK z G G z
z z

 


   

2.      
10 1 2k k k k Ny a y G x G x      1

12 1 1 1 1
k Nk

kg k G z G z    


  112
1 2

1
( ) Nk zK z G G z

z z
 

3. -
 

-  
 


  1

13 1 2
13

1( ) NzK z k G G z
z z

 

Table 3. Methods of the transition from an analog FIR filter to a digital FIR filter  
 
Note: The double subscripts are given for the parameters that do not coincide. The second 
number means the sequence number of the transition method.  
1. 11k T ,   11 11 /(1 )z T , 1 1 /N T T , complex frequency  11 11ln( ) /z T ; 
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The model (1) also makes it possible to describe the majority of impulse signals, which are 
widely applicable in radio engineering. Examples of some impulse signals are shown it the 
Table 2. Therefore, the generalized mathematical model (1) enables to describe a big variety 
of semi-infinite or finite signals. 
As it is shown below, the compound finite signal representations in the form of the set of 
damped oscillatory components significantly simplifies the problem solving of the signal 
passage analysis through the frequency filters, by using the analysis methods based on signal 
and filter spectral representations in complex frequency coordinates (Mokeev, 2007, 2008b).  

 
2.2 Mathematical description of filters  
Analysis and synthesis of filters of digital automation and measurement devices are 
primarily carried out for analog filter-prototypes. The transition to digital filters is 
implemented by using the known synthesis methods. However, this method can only be 
applied for IIR filters, as a pure analog FIR filter does not exist because of complications of 
its realization. Nevertheless, implementation of this type of analog filters is rational 
exclusively as they are considered “perfect” filters for analog signal processing and as filter-
prototypes for digital FIR filters (Mokeev, 2007, 2008b). 
When solving problems of digital filters analysis and synthesis, one will not take into 
account the AD converter errors, including the errors due to signal amplitude quantization. 
This gives the opportunity to use simpler discrete models instead of digital signal and filter 
models (Ifeachor, 2002, Smith, 2002). These types of errors are only taken into consideration 
during the final design phase of digital filters. In case of DSP with high digit capacity, these 
types of errors are not taken into account at all. 
The mathematical description of analog filter-prototypes and digital filters can be expressed 
with the following generalized forms of impulse functions:  

     T 'T( ) ttg t e eQq C TG G ,   ( ) Re ( )g t g t , (4) 

        T 'T( ) , ,g k Z k Z kG q G Q C N ,   ( ) Re ( )g k g k . (5) 

Therefore, for analog and digital filter description it is sufficient to use vectors of complex 
amplitudes of two parts of complex function:  

       
  mj

m mM M
G k eG  and       

  ' ' m mT
m mM M

G G eG , vector of complex frequencies 

       m m mM Mjwq  and vectors    m MTT  и   m MNN , which define the duration 

(length) of the filter pulse function components;   diagQ q – is a square matrix M×M with 
the vector q  on the main diagonal. 
Adhering to the mathematical description of the FIR filter impulse function mentioned 
above (4), the IIR filter impulse functions are a special case of analogous functions of FIR 
filters at   'G 0 .   
Recording the mathematical description of filters in such a complex form has advantages: 
firstly, the expression density, and secondly, correlation to two filters at the same time, 
which allows for ensured calculation of instant spectral density module and phase on given 
complex frequency (Smith, 2002). 
The transfer function of the filter (4) with the complex coefficients is  

 

    
          
 T 'T1 1( ) mpT

m mM M

K p e
p p

G G , (6) 

The transfer function ( )K p  is an expression of the complex impulse function (6), therefore it 
has along with the complex variable p  complex coefficients, defined by the vectors 
 ,G  'G and q . A filter with the transfer function ( )K p  correlates with two ordinary filters, 

which transfer functions are  Re ( )K p  and  Im ( )K p . In this case the extraction of the real 
and imaginary parts of ( )K p  can be applied only to complex coefficients of the transfer 
function and has no relevance for the complex variable p . 
As it appears from the input signal models (1) and filter impulse functions (4), there is a 
similarity between their expressions of time and frequency domains. Filter impulse 
functions based on the model (4) may have a compound form, including the analogous ones 
referred to above in Tables 1 and 2.  
The similarity of mathematical signal and filter expressions: firstly, allow to use one 
compact form for their expression as a set of complex amplitudes, complex frequencies and 
temporary parameters. Secondly, it significantly simplifies solving problems of 
mathematical simulation and frequency filter analysis.  
The digital filter description (5) can be considered as a discretization result of analog filter 
impulse function (4). Another known transition (synthesis) methods can be also applied, if 
they are revised for use with analogue filters-prototypes with a finite-impulse response 
(Mokeev, 2008b).   

 
2.3 Methods of the transition from an analog FIR filter to a digital filter  
The mathematical description of digital FIR filters at  1M  is given in the Table 3, these 
filters were obtained on the basis of the analog FIR filter (item 0) by use of three transformed 
known synthesis methods: the discrete sampling method of the differential equation (item 
1), as well as the method of invariant impulse responses (item 2) and the method of bilinear 
transformation (item 3). 
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Table 3. Methods of the transition from an analog FIR filter to a digital FIR filter  
 
Note: The double subscripts are given for the parameters that do not coincide. The second 
number means the sequence number of the transition method.  
1. 11k T ,   11 11 /(1 )z T , 1 1 /N T T , complex frequency  11 11ln( ) /z T ; 
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2.  1
1

Tz e ,  0 1( 1) /a z T , 12k T ; 
3.  13 1/(2 )k T T ,    13 1 1(2 ) /(2 )z T T , complex frequency  13 13ln( ) /z T .  
In cases of the first and third methods the coincidence of impulse function complex 
frequencies of digital filter and analog filter-prototype is possible only if  0T . The second 
method ensures the entire concurrence of complex frequencies of an analogue filter-
prototype and a digital filter in all instances. The later is very important, when the filter is 
supposed to be used as a spectrum analyzer in coordinates of complex frequency. 
The features of transition from a digital (discrete) filter, considering finite digit capacity 
influence of microprocessor, including cases for filters with integer-valued coefficients, are 
considered by the author in the research . 
One of the most important advantages of the considered above approach to mathematical 
description of FIR filters is obtaining FIR filter fast algorithms (Mokeev, 2008a, 2008b). 

 
2.4 Overlapping the spectral and time approach  The impulse function (3) corresponds to the following differential equation 
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where   diagA q ,  B G ,    'diagD G ;   T( ) Re ( )y t tC y  is a output signal of the filter.  

In case of FIR filter ( D 0 ) the expression (7) is conform to one of known forms of state 
space method. Thus, the application of mentioned spectral representations allows to 
combine the spectral approach with the state space method for frequency filter analysis and 
synthesis (Mokeev, 2008b, 2009b). 
If one places the expression of generalized impulse characteristic (4) to the expression of 
convolution integral, one will get the following expression of the filter output signal  
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If a generalized input signal (1) is fed into the filter input, simple input-output relations 
(Mokeev, 2008b) can be gained on the base of the expression (8).   
The expression (8) can be transformed into the following form 
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complex frequency.  
Therefore, the elements of the vector  ( )ty are defined by solving M-number of independent 
equations (7), each one of those can be interpreted as a value of instant (FIR filter) or current 
(IIR filter) Laplace spectrum in corresponding complex frequency of filter impulse function 
component.  
The expression (7) is a generalization of one of state space method forms, and at the same 
time directly connected with the Laplace spectral representations. So, one can view the 

 

overlapping time approach (state space method) and frequency approach in complex 
frequency coordinates.  
On the base of analogue filter-prototype (7) descriptions, a mathematical expression of digital 
filters can be obtained, by use of the known transition (synthesis) methods,  applied to FIR 
filters (Mokeev, 2008b). In this case fast algorithms for FIR filters are additionally synthesized. 

 
2.5 Features of signal spectrum and filter frequency responses  
in complex frequency coordinates To illustrate the features of signal spectrums and filter frequency responses in coordinates of 
complex frequency, the fig. 1 shows amplitude-frequency response schematics of IIR filter 
and a spectral density module of input signal, if the following conditions apply:  the filter 
represents a series of low-pass second-order and first-order filters, and can be described by 

complex amplitude vector    
 T2,3369,63 6,67jeG  and complex frequency vector 

 T = 150 640 400j  q ; the input signal consists of an additive mixture of an unit step, 
exponential component, semi-infinite sinusoidal component and damped oscillatory 
component, and can be compactly described by complex amplitude vector 

T0,251 2 2j je e    X and complex frequency vector  T0 120 300 40 500j j   p . 
 

 
Fig. 1. 3D amplitude signal spectrum and filter amplitude-frequency response  
 
The 3D amplitude-frequency response (fig. 1) of the filter and signal spectrum module 
shows, that complex frequencies of filter and input signal impulse functions have clearly 
defined peaks. 
This means, a 3D signal spectrum in complex frequency coordinates contains a continuous 
spectrum along with four discrete lines on complex frequencies of input signal components. 
The signal spectral densities on the mentioned complex frequencies are proportional to delta 

Re( )p

( )X p

( )K p

Im( )p



The application of spectral representations in coordinates  
of complex frequency for digital filter analysis and synthesis 33

 

2.  1
1

Tz e ,  0 1( 1) /a z T , 12k T ; 
3.  13 1/(2 )k T T ,    13 1 1(2 ) /(2 )z T T , complex frequency  13 13ln( ) /z T .  
In cases of the first and third methods the coincidence of impulse function complex 
frequencies of digital filter and analog filter-prototype is possible only if  0T . The second 
method ensures the entire concurrence of complex frequencies of an analogue filter-
prototype and a digital filter in all instances. The later is very important, when the filter is 
supposed to be used as a spectrum analyzer in coordinates of complex frequency. 
The features of transition from a digital (discrete) filter, considering finite digit capacity 
influence of microprocessor, including cases for filters with integer-valued coefficients, are 
considered by the author in the research . 
One of the most important advantages of the considered above approach to mathematical 
description of FIR filters is obtaining FIR filter fast algorithms (Mokeev, 2008a, 2008b). 

 
2.4 Overlapping the spectral and time approach  The impulse function (3) corresponds to the following differential equation 

        


 + ( )
d t

t x t x t
dt
y

Ay B D C T ,   (7)

where   diagA q ,  B G ,    'diagD G ;   T( ) Re ( )y t tC y  is a output signal of the filter.  

In case of FIR filter ( D 0 ) the expression (7) is conform to one of known forms of state 
space method. Thus, the application of mentioned spectral representations allows to 
combine the spectral approach with the state space method for frequency filter analysis and 
synthesis (Mokeev, 2008b, 2009b). 
If one places the expression of generalized impulse characteristic (4) to the expression of 
convolution integral, one will get the following expression of the filter output signal  

   



    ( )T( )
t

t

t

y t x e dq

C T

G .   (8)

If a generalized input signal (1) is fed into the filter input, simple input-output relations 
(Mokeev, 2008b) can be gained on the base of the expression (8).   
The expression (8) can be transformed into the following form 

   



  
1

( ) m

M
t

m T m
m

y t G X e ,   

where ( , ) ( )
t

p
T

t T

X p t x e d 



    -  is the instant spectrum of input signal in coordinates of 

complex frequency.  
Therefore, the elements of the vector  ( )ty are defined by solving M-number of independent 
equations (7), each one of those can be interpreted as a value of instant (FIR filter) or current 
(IIR filter) Laplace spectrum in corresponding complex frequency of filter impulse function 
component.  
The expression (7) is a generalization of one of state space method forms, and at the same 
time directly connected with the Laplace spectral representations. So, one can view the 

 

overlapping time approach (state space method) and frequency approach in complex 
frequency coordinates.  
On the base of analogue filter-prototype (7) descriptions, a mathematical expression of digital 
filters can be obtained, by use of the known transition (synthesis) methods,  applied to FIR 
filters (Mokeev, 2008b). In this case fast algorithms for FIR filters are additionally synthesized. 

 
2.5 Features of signal spectrum and filter frequency responses  
in complex frequency coordinates To illustrate the features of signal spectrums and filter frequency responses in coordinates of 
complex frequency, the fig. 1 shows amplitude-frequency response schematics of IIR filter 
and a spectral density module of input signal, if the following conditions apply:  the filter 
represents a series of low-pass second-order and first-order filters, and can be described by 

complex amplitude vector    
 T2,3369,63 6,67jeG  and complex frequency vector 

 T = 150 640 400j  q ; the input signal consists of an additive mixture of an unit step, 
exponential component, semi-infinite sinusoidal component and damped oscillatory 
component, and can be compactly described by complex amplitude vector 

T0,251 2 2j je e    X and complex frequency vector  T0 120 300 40 500j j   p . 
 

 
Fig. 1. 3D amplitude signal spectrum and filter amplitude-frequency response  
 
The 3D amplitude-frequency response (fig. 1) of the filter and signal spectrum module 
shows, that complex frequencies of filter and input signal impulse functions have clearly 
defined peaks. 
This means, a 3D signal spectrum in complex frequency coordinates contains a continuous 
spectrum along with four discrete lines on complex frequencies of input signal components. 
The signal spectral densities on the mentioned complex frequencies are proportional to delta 

Re( )p

( )X p

( )K p

Im( )p



Digital Filters34

 

function. Values of the transfer function on the mentioned complex frequencies of input 
signal define a variation law of forced filter output signal components concerning input 
signal components (Mokeev, 2007, 2008b). The rest of spectral regions characterize the 
transient process in the filter due to step-by-step change of the input signal at the time zero. 
A filters amplitude-frequency response is also three-dimensional and is represented by a 
continuous spectrum and two discrete lines on complex frequencies of impulse function 
components. In this case the values of the input signal representation of the above 
mentioned complex frequencies, define a variation law of free components in relation to 
filter impulse function components (Mokeev, 2007). 

 
3. Filter analysis  

3.1 Analysis methods based on features of signal and filter  
spectral representations in complex frequency coordinates  
Three methods of frequency filter analysis are suggested from the time-and-frequency 
representations positions of signals and linear systems in coordinates of complex frequency 
(Mokeev, 2007, 2008b). 
The first method is based on the above considered features of signal spectrums and filter 
frequency responses in complex frequency coordinates, and it allows for the determination 
of forces and free filter components, by the use of simple arithmetic operations.  
The other two methods are based on applied time-and-frequency representations of signals 
or filters in coordinates of complex frequency. In this case instead of determining forced and 
free components of the output filter signal, it is enough to consider the filter dynamic 
properties by using only one of the mentioned component groups.  
Based on time-and-frequency representations of signals and linear systems in coordinates of 
complex frequency, the known definition by Charkevich A.A. (Kharkevich, 1960) for 
accounting the dynamic properties of linear system is generalized: 
1.  the signal is considered as current or instantaneous spectrum, and the system (filter) – 

only as discrete components of frequency responses in coordinates of complex 
frequency; 

2. the signal is characterized only by discrete components of spectrum, and the system 
(filter) – by time dependence frequency responses. 

Analysis methods for analog and digital IIR filters in case of semi-infinite input signals, 
similar to (1), are considered below. These methods of filter analysis can be simply applied 
to more complicated cases, for instance, to FIR filter (4) analysis at finite input signals 
(Mokeev, 2008b). 

 
3.2 The first method of filter analysis: complex amplitude method generalization 
The first method is a complex amplitude method generalization for definition of forced and 
free components for filter reaction at semi-infinite or finite input signals.   
The advantages of this method are related to simple algebraic operations, which are used for 
determining the parameters of linear system reaction (filter, linear circuit) components to 
input action described by a set of semi-infinite or finite damped oscillatory components.  
Here, the expressions for determining forced and free components of analog and digital IIR 
filter reaction to a signal, fed to filter input as a set of continuous or discrete damped 

 

oscillatory components, i.e. for the generalized signal (1) and (2) at  'X 0 , are given as 
examples on fig. 2 and 3. 
 

 
 
Fig. 2. Determining the forced components of an IIR filter output signal  
 

 
Fig. 3. Determining the free components of an IIR filter output signal  
 
The following notations are used in the expressions on fig. 2 and fig. 3: ( )X p or ( )X z , that 
are the representations of the input signal without regard for phase shift of signal 
components  TeqZ  . 
The example for determining the reaction (curve 1) of analog and digital (discrete) third-
order filter (condition in item 3.1), and the total forced (curve 2) and free (curve 3) 
components is shown on the fig. 4. Using Matlab and Mathcad for determining the forced 
and free components of an output signal, only complex amplitude vectors of an input signal 
and filter impulse function , as well as the complex frequency vectors of an input signal and 
filter are needed to be specified. The remaining calculations are carried out automatically.  
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Fig. 4. Determining the forced and free components of an output signal  
 
The input-output expressions presented on fig. 2 and fig. 3 can be applied also to FIR filters 
and finite signals (Mokeev, 2008b). 

 
3.3 The second method: filter as a spectrum analyzer  
The second method is based on interpreting a filter as an analyzer of current or instantaneous 
spectrum of an input signal in coordinates of complex frequency (Mokeev, 2007, 2008b). 
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The input-output expressions presented on fig. 2 and fig. 3 can be applied also to FIR filters 
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If one converts the expression for an IIR filter complex impulse function (4) into an 
expression of convolution integral, the result will be the dependence for a filter output 
signal: 
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where    
0

( , ) ( )
t

pX p t x e d  -  is the current spectral density of an input signal, using Laplace 

transform.  
On the base of the expression (9) the calculations for determining a filter output signal 
components are gained and represented on the fig. 5.  
 

 
Fig. 5. Determining the IIR filter reaction  
 
As concluded from the expression above, an IIR filter output signal depends on values of 
the current Laplace spectrum of an input signal on filter impulse function complex 
frequencies. Thus, a FIR filter is an analyzer of a signal instantaneous spectrum in a 
coordinates of complex frequency.  

 
3.4 The third method: diffusion of time-and-frequency approach to transfer function 
The time-and-frequency approach in the third analysis method applies to a filter transfer 
function, i.e. time dependent transfer function of the filter is used.  
If one places the expression for a complex semi-infinite input signal (1) into the expression 
for convolution integral, one will obtain the following dependence  
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pK p t g e d  -  is time dependent transfer function of filter. 

Then the input-output dependence for an IIR filter (4), when it is fed to semi-infinite input 
signal, can be compactly presented in the following way (fig. 6). 
 

 
Fig. 6. Filter reaction determination  
 
Thus, a function modulus ( , )nK p t value on the complex frequency of n-th input signal 
component describes the variation law of n-th component envelope of filter output signal. 
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The function argument characterizes phase change of the later mentioned output signal 
component. Since the transient processes in filter are completed, the complex amplitude 
 ( )nY t  will coincide with the complex amplitude of the forced component nY . 

In that case, filter amplitude-frequency and phase-frequency functions will be a three-
variable functions, i.e. it is necessary to represent responses in 4D space. For practical 
visualization of frequency responses the approach, based on use of three-dimensional 
frequency responses at complex frequency real or imaginary partly fixed value, can be 
applied.   
Let us consider the example from the item 3.1. The plot, shown on fig. 7 , is proportional to 
the product 4

4( , ) tK j t e   . This plot on the complex frequency 4 4 4p j    is equal 
to the envelope (curve 1 and 2) of filter reaction (curve 3) on the fourth component’s input 
action for the filter input signal.  
 

 
Fig. 7. Plot of the function 4
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The advantages of these suggested analysis methods, comparing to the existing ones for 
specified generalized models of input signals and frequency filters, consist in calculation 
simplicity, including solving problems of determining the performance parameters of signal 
processing by frequency filters.  

 
4. Filter synthesis  

4.1 IIR filter synthesis  
The application of spectral representations in complex frequency coordinates allows to 
simplify significantly solving problems of filter synthesis for generalized signal model (1). 
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If one converts the expression for an IIR filter complex impulse function (4) into an 
expression of convolution integral, the result will be the dependence for a filter output 
signal: 

         T

0

( ) ( ) ( ) ( , )
t

ty t x g t d X t eqG Q , (9) 

where    
0

( , ) ( )
t

pX p t x e d  -  is the current spectral density of an input signal, using Laplace 

transform.  
On the base of the expression (9) the calculations for determining a filter output signal 
components are gained and represented on the fig. 5.  
 

 
Fig. 5. Determining the IIR filter reaction  
 
As concluded from the expression above, an IIR filter output signal depends on values of 
the current Laplace spectrum of an input signal on filter impulse function complex 
frequencies. Thus, a FIR filter is an analyzer of a signal instantaneous spectrum in a 
coordinates of complex frequency.  

 
3.4 The third method: diffusion of time-and-frequency approach to transfer function 
The time-and-frequency approach in the third analysis method applies to a filter transfer 
function, i.e. time dependent transfer function of the filter is used.  
If one places the expression for a complex semi-infinite input signal (1) into the expression 
for convolution integral, one will obtain the following dependence  
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pK p t g e d  -  is time dependent transfer function of filter. 

Then the input-output dependence for an IIR filter (4), when it is fed to semi-infinite input 
signal, can be compactly presented in the following way (fig. 6). 
 

 
Fig. 6. Filter reaction determination  
 
Thus, a function modulus ( , )nK p t value on the complex frequency of n-th input signal 
component describes the variation law of n-th component envelope of filter output signal. 
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The function argument characterizes phase change of the later mentioned output signal 
component. Since the transient processes in filter are completed, the complex amplitude 
 ( )nY t  will coincide with the complex amplitude of the forced component nY . 

In that case, filter amplitude-frequency and phase-frequency functions will be a three-
variable functions, i.e. it is necessary to represent responses in 4D space. For practical 
visualization of frequency responses the approach, based on use of three-dimensional 
frequency responses at complex frequency real or imaginary partly fixed value, can be 
applied.   
Let us consider the example from the item 3.1. The plot, shown on fig. 7 , is proportional to 
the product 4

4( , ) tK j t e   . This plot on the complex frequency 4 4 4p j    is equal 
to the envelope (curve 1 and 2) of filter reaction (curve 3) on the fourth component’s input 
action for the filter input signal.  
 

 
Fig. 7. Plot of the function 4
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The advantages of these suggested analysis methods, comparing to the existing ones for 
specified generalized models of input signals and frequency filters, consist in calculation 
simplicity, including solving problems of determining the performance parameters of signal 
processing by frequency filters.  

 
4. Filter synthesis  

4.1 IIR filter synthesis  
The application of spectral representations in complex frequency coordinates allows to 
simplify significantly solving problems of filter synthesis for generalized signal model (1). 
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Let us consider robust filter synthesis, which have low sensitivity to change of useful signal 
and disturbance parameters (Sánchez Peña, 1998). In other words, robust filters must ensure 
the required signal performance factors at any possible variation of useful signal and 
disturbance parameters, influencing on their spectrums. If one takes into account only two 
main performance factors of signals: speed and accuracy, it will be enough to assure 
fulfillment of requirements, connected to limitations for filter transfer function module on 
complex frequency of useful signal and disturbance components (Mokeev, 2009c).  
Thus, filter synthesis problem, instead of setting the requirements to particular frequency 
response domains (pass band and rejection band), comes to form the dependences for filter 
transfer function on complex frequencies of input signal components. To ensure the 
required performance signal factors, it is necessary to consider possible variation ranges of 
mentioned complex frequencies.  
The synthesis will be carried out with increasing numbers of impulse function components 
(4) till the achievement of the specified performance signal factors.  
The block diagram, shown on fig. 8, illustrates the synthesis of optimal analogue filter-
prototype. 

 
 
Fig. 8. Block diagram of optimal filter  
 
The useful signal 0( )x t  and the disturbance ( )nx t  on the graph _ are completely determined 

by complex amplitude vectors 0X , nX  and complex frequency vectors 0p , np . The vectors 

of complex amplitudes and input signal frequencies are characterized as 
T

0 n   X X X   , 

 T0 np p p . In case of the value of the transformation operator ( ) 1H p , the error vector-
function is    0( ) ( ) ( )t y t x t , in the rest of cases :   ( ) ( ) ( )t y t z t . 
Limitations on forced component level for IIR filter are set by the limitations on filter amplitude-
frequency response in complex frequency coordinates. Therefore, the problem of fulfillment of 
signal processing accuracy requirements in filter operation stationary mode is completely solved, 
and the filter speed  will be determined by transient process duration in the filter, i.e. by free 
component damping below the permissible level (less than acceptable error of signal processing).  
Free components damping can be approximately determined by the sum of their envelopes.  
Thus, filter synthesis at specified structure comes to determination of its parameters, at 
which the specified requirements to frequency responses in complex frequency coordinates 
are ensured, and to ascertain the minimum time for signal processing performance 
requirements guaranteeing. One more suggested method, that enables to simplify optimal 
filter estimation, is related to use of time dependent filter transfer function  ,K p t .  
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For searching the optimal solution it is reasonable to apply the realization  in Optimization 
Toolbox package, a part of MATLAB system of nonlinear optimization procedure methods 
with the limitations to a filter transfer function value on specified complex frequencies of 
input signal components and filter speed. 
Order of filter synthesis, according to specified block diagram (fig. 8), consists in the 
following. Type and filter order are given on the basis of features of solving problem, target 
function and restrictions on filter frequency response values in complex frequency 
coordinates are formed based on ensuring of signal processing performance required 
parameters. Then filter parameters are calculated with use of optimization procedures. In 
case of the found solution does not meet signal processing performance requirements, the 
order of filter should be raised and filter parameters should be found again.  
Let us consider an example of analogue filter-prototype synthesis to separate the sine signal 
against a disturbance background in the exponential component form.  
To extract the useful signal and eliminate the disturbance, acceptable speed can be only be 
obtained with use of second-order and higher order filters. Let us consider second-order 
high-pass filter synthesis.  
The main phases of IIR filter synthesis for selection industrial frequency useful signal 
against a background of exponential disturbance are presented in table 4.   
 
№ Name Conditions 

1. 
Input signal 

   2
1 1 2( ) cos t

mx t X t X e  

limits of useful signal frequency variation     1 2 45 55  rad/s, 

maximum disturbance level 2 1mX X , 

changing size of damping coefficient     1
2 0 200 s  

2. Signal processing 
performance requirements  

1. acceptable error  in signal processing: 
automation function  1 0,1 (5 %),  

metering function  2 0,01 (1 %), 

2. speed:  1 20 мс (5%),  2 40 ms (1%), 
3. acceptable overshoot  level:   10% 

3. 

Requirements to filter 
amplitude-frequency 
response in complex 
frequency coordinates  

1. section  p j :   0 1K j ,   0 100 rad/s, 

          2 0 21 1K j ,    10  rad/s 

2. section p   :   1
1( )K e ,    2

2( )K e  

4. 
 
Transfer function of second-
order high-pass filter  

  
 

2

2 2
0,874
224 221

pK p
p p

 

Table 4. IIR filter synthesis  
 
The amplitude-frequency responses in the sections p j   and p     (at  1 0,02 s ) are 
represented on fig. 9. On fig. 9 along with filter amplitude-frequency response the 
limitations on filter amplitude-frequency response values, according to the requirements in 
table 4 item 3, are shown. Amplitude-frequency response value out of mentioned 
restrictions zone conventionally is 1 . As follows from the fig. 9, the synthesized filter 
completely meets the requirements of signal processing accuracy at frequency change 5  
Hz in power system.  
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Let us consider robust filter synthesis, which have low sensitivity to change of useful signal 
and disturbance parameters (Sánchez Peña, 1998). In other words, robust filters must ensure 
the required signal performance factors at any possible variation of useful signal and 
disturbance parameters, influencing on their spectrums. If one takes into account only two 
main performance factors of signals: speed and accuracy, it will be enough to assure 
fulfillment of requirements, connected to limitations for filter transfer function module on 
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Thus, filter synthesis problem, instead of setting the requirements to particular frequency 
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required performance signal factors, it is necessary to consider possible variation ranges of 
mentioned complex frequencies.  
The synthesis will be carried out with increasing numbers of impulse function components 
(4) till the achievement of the specified performance signal factors.  
The block diagram, shown on fig. 8, illustrates the synthesis of optimal analogue filter-
prototype. 
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and the filter speed  will be determined by transient process duration in the filter, i.e. by free 
component damping below the permissible level (less than acceptable error of signal processing).  
Free components damping can be approximately determined by the sum of their envelopes.  
Thus, filter synthesis at specified structure comes to determination of its parameters, at 
which the specified requirements to frequency responses in complex frequency coordinates 
are ensured, and to ascertain the minimum time for signal processing performance 
requirements guaranteeing. One more suggested method, that enables to simplify optimal 
filter estimation, is related to use of time dependent filter transfer function  ,K p t .  
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For searching the optimal solution it is reasonable to apply the realization  in Optimization 
Toolbox package, a part of MATLAB system of nonlinear optimization procedure methods 
with the limitations to a filter transfer function value on specified complex frequencies of 
input signal components and filter speed. 
Order of filter synthesis, according to specified block diagram (fig. 8), consists in the 
following. Type and filter order are given on the basis of features of solving problem, target 
function and restrictions on filter frequency response values in complex frequency 
coordinates are formed based on ensuring of signal processing performance required 
parameters. Then filter parameters are calculated with use of optimization procedures. In 
case of the found solution does not meet signal processing performance requirements, the 
order of filter should be raised and filter parameters should be found again.  
Let us consider an example of analogue filter-prototype synthesis to separate the sine signal 
against a disturbance background in the exponential component form.  
To extract the useful signal and eliminate the disturbance, acceptable speed can be only be 
obtained with use of second-order and higher order filters. Let us consider second-order 
high-pass filter synthesis.  
The main phases of IIR filter synthesis for selection industrial frequency useful signal 
against a background of exponential disturbance are presented in table 4.   
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Input signal 

   2
1 1 2( ) cos t

mx t X t X e  
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changing size of damping coefficient     1
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2. Signal processing 
performance requirements  

1. acceptable error  in signal processing: 
automation function  1 0,1 (5 %),  

metering function  2 0,01 (1 %), 

2. speed:  1 20 мс (5%),  2 40 ms (1%), 
3. acceptable overshoot  level:   10% 

3. 

Requirements to filter 
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response in complex 
frequency coordinates  
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Table 4. IIR filter synthesis  
 
The amplitude-frequency responses in the sections p j   and p     (at  1 0,02 s ) are 
represented on fig. 9. On fig. 9 along with filter amplitude-frequency response the 
limitations on filter amplitude-frequency response values, according to the requirements in 
table 4 item 3, are shown. Amplitude-frequency response value out of mentioned 
restrictions zone conventionally is 1 . As follows from the fig. 9, the synthesized filter 
completely meets the requirements of signal processing accuracy at frequency change 5  
Hz in power system.  



Digital Filters40

 

The plot of transient process in second-order high-pass filter at signal feeding (table 4 point 
1) is presented on fig. 10. The transient process durations are 11 ms (that is 10% of 
acceptable error), 15 ms (5%) and 33 ms (1%) at any exponential component damping 
coefficient value from the specified range 0 200    s-1.  
 

 
Fig. 9. Filter amplitude-frequency response in the sections 2p j f   and p      
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Fig. 10. Filter output signal    
 
Therefore, synthesized second-order high-pass filter has low sensitivity to exponential 
component damping coefficient variation and to power system frequency deviation.  
This example clearly illustrates the advantages of using the Laplace transform spectral 
representations for frequency filter synthesis. Applying these representations in 
combination with multidimensional optimization methods with the contingencies enables to 
perform frequency filter synthesis for problems, that were unsolvable at traditional spectral 
representations usage (Mokeev, 2008b). For instance, for the problem of filter synthesis for 
separation of the following signals: constant and exponential signals, two exponential 
signals with non-overlapping damping coefficient change ranges, sinusoidal and damped 
oscillatory components with equal or similar frequencies.  
The mentioned above synthesis method can be also effectively apply for typical signal 
filtering problems, including problems of useful signal extraction against the white noise. In 
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that, the white noise realizations can be described by the special case of generalized signal 
model (1) as a set of time-shifted fast damping exponents of different digits. Initial values 
and appearance time of the mentioned exponential components are random variables, 
which variation law ensures the white noise specified spectral characteristics. This white 
noise model allows to approach filter synthesis on the basis of the signal spectral 
representation features (1) in complex frequency coordinates and to guarantee the required 
combinations of signal processing speed and accuracy (Mokeev, 2008b). 

 
4.2 FIR filter synthesis  
Comparing to IIR filter synthesis, synthesis of FIR filters is significantly simpler due to 
easier control over transient processes duration in filter. In case of compliance with the 
restrictions on amplitude-frequency response values on input signal complex frequencies 
(1), filter speed will be determined by the length of its impulse response.  
As examples of synthesis, let us consider averaging FIR filter synthesis for intellectual 
electronic devices (IED) of electric power systems. Block diagram of the most widespread 
signal processing algorithm is given on Fig. 11. 
 

 
Fig. 11. Block diagram for signal processing  
 
There is the input-output dependence for the considered algorithm 
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1( )

t t
j

t T t T

X t e w t d x w t d .  

This expression corresponds to short-time Fourier transform on the frequency  0 .  
Frequency filtering efficiency depends much to a large extent on the choice (synthesis) of 
time window  w t , or on filter impulse function, that is equivalent for averaging filter.  
Let us consider input signal as a set of complex amplitudes and exponential disturbance 
frequencies, industrial frequency useful signal 1 and higher harmonics 

 T
0 1 2 3 NX X X X X   X     ,  T0 1 1 1 12 3 4j j j j     p  . (10) 

If one separates the exponential component and denotes the vector for harmonic complex 
amplitudes by 1X , the filter input signal can be presented in the following way 

             1 0 1 00( ) T T
0 1 1( ) 2 2 2j t j tj tx t X e e en nX X ,  

where the vector  1X  consists of conjugate to the vector  1X elements. 
When nominal frequency of power system is 1 0   , 
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n n
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The plot of transient process in second-order high-pass filter at signal feeding (table 4 point 
1) is presented on fig. 10. The transient process durations are 11 ms (that is 10% of 
acceptable error), 15 ms (5%) and 33 ms (1%) at any exponential component damping 
coefficient value from the specified range 0 200    s-1.  
 

 
Fig. 9. Filter amplitude-frequency response in the sections 2p j f   and p      
 

0 0.01 0.02 0.03 0.04 0.05

1

0

1

 
Fig. 10. Filter output signal    
 
Therefore, synthesized second-order high-pass filter has low sensitivity to exponential 
component damping coefficient variation and to power system frequency deviation.  
This example clearly illustrates the advantages of using the Laplace transform spectral 
representations for frequency filter synthesis. Applying these representations in 
combination with multidimensional optimization methods with the contingencies enables to 
perform frequency filter synthesis for problems, that were unsolvable at traditional spectral 
representations usage (Mokeev, 2008b). For instance, for the problem of filter synthesis for 
separation of the following signals: constant and exponential signals, two exponential 
signals with non-overlapping damping coefficient change ranges, sinusoidal and damped 
oscillatory components with equal or similar frequencies.  
The mentioned above synthesis method can be also effectively apply for typical signal 
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that, the white noise realizations can be described by the special case of generalized signal 
model (1) as a set of time-shifted fast damping exponents of different digits. Initial values 
and appearance time of the mentioned exponential components are random variables, 
which variation law ensures the white noise specified spectral characteristics. This white 
noise model allows to approach filter synthesis on the basis of the signal spectral 
representation features (1) in complex frequency coordinates and to guarantee the required 
combinations of signal processing speed and accuracy (Mokeev, 2008b). 

 
4.2 FIR filter synthesis  
Comparing to IIR filter synthesis, synthesis of FIR filters is significantly simpler due to 
easier control over transient processes duration in filter. In case of compliance with the 
restrictions on amplitude-frequency response values on input signal complex frequencies 
(1), filter speed will be determined by the length of its impulse response.  
As examples of synthesis, let us consider averaging FIR filter synthesis for intellectual 
electronic devices (IED) of electric power systems. Block diagram of the most widespread 
signal processing algorithm is given on Fig. 11. 
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Thus, averaging FIR filter at 1 0    must ensure the separation of constant component 1X  
and elimination of damped oscillatory component, sinusoidal component with double to 
industrial frequency, related to useful signal transform , and also of higher harmonics with 
frequencies multiple of 0 . In case of 1 0   , useful input signal of averaging filter will be 
a low-frequency sine signal with the frequency 1 0  . 
In filter synthesis the following signal parameters should be taken into account: the 
exponential disturbance damping coefficient changes in signal ( )x t , power system 
frequency and related to it useful signal and disturbance changes,  which influence on signal 
spectral composition and useful signal-disturbance ratio.  
Let us consider averaging FIR filters synthesis for PMU (Phasor Measurement Units) devices 
and compare the gained results with averaging FIR filters, applied in one of the best  PMU – 
Model 1133A Power Sentinel, made by American company Arbiter (Gustafson, 2009). 
In this PMU one of the following time windows can be implemented: Raised cosine, Hann, 
Hamming, Blackman, Bartlett, Rectangular, Flat Top, Kaiser, Nutall 4-term, at any filter 
length, which can be from one to several periods of industrial frequency 0 02 /T    . 
First let us find the solutions without consideration of exponential disturbance elimination, 
as it is accepted in the most of PMU (Phadke, 2008). The filter must guarantee less than 40 
ms speed and 0.2 accuracy class.  
Let us accept the following parameters for FIR filter generalized impulse function: 

 T'
0 1 2 3 4G G G G G G G  ,    T1 1 1 10 2 3 4jw j w j w j wq ,    

 T1 1 1 1 1T T T T TT ,  1 12 /T w    .  
This special case corresponds to so-called generalized cosine time window (Smith, 2002). 
This type of window will be further described by the set of only two parameters: G and 1T . 
Optimization procedure and target function choice of is a nontrivial problem. In general, in 
case of several synthesis purposes (criteria), it is complicated to get a rigorous optimal 
solution. Therefore, the found solutions for averaging FIR filters, should be considered as 
suboptimal.  
Let us consider averaging FIR filters synthesis with use of nonlinear multivariable method, 
based on function of The Optimization Toolbox extends of MATLAB system. The found 
solutions at different filter lengths are given in table 5 and on fig. 12.  
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Let us consider averaging FIR filters synthesis with use of nonlinear multivariable method, 
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Let us do synthesis of averaging filter with use of FIR filter generalized model (4) at 2M  , 
according to the requirements in table 6.   
 
№ Name Conditions 

1. 
Changing sizes of filter 
input signal parameters 
(10) 

    1 2 45 55  rad/s,    1 0 2 ,   0 10 1 mX X ,  
   1

0 20 200 s ,   0 10 1 mX X ,    10 0,5n mX X ,  2n  

2. 
Signal processing 
performance 
requirements 

1. Acceptable error:  1 0,001,  2 0,0015 (0,15 %), 
additional error at power system frequency deviation: 
 2 0,0015 (0.15 %), 

additional error at 0 1mX X ,    1
0 20 200 s  and  1t T : 

 3 0,03 (3 %), 
2. speed: 1 0,06T  s,  1 0,04 s 
3. acceptable overshoot level:   10% 

3. 

Requirements to filter 
amplitude-frequency 
responses in complex 
frequency  coordinates  
 

1. section  p j :   0 1K ,         12 121 1K j ,  

   0 12K j ,        0 122K j ,   

      0 122 0,5K j n ,  3n  

where   10  rad/s,      12 1 2  
2. section    0p j :  

    1
0 32 ( ) TK j e ,     1

02 ( ) 0.05K j e  

Table 6. Averaging FIR filter synthesis  
 
The lengths of all finite damped oscillatory components of filter impulse functions will be 
considered as equal. Using different efficiency functions, two averaging FIR filters with 
practically identical frequency responses were obtained: 
 

   
 T4,232 0,5887

1 80,48 37,93j je eG ,       T
1 22,99 62,30 23,26 186,9j jq , 

 T1 11 11T TT , 11 0,051T с,   1 111T 'T
1 1 1( ) Re t Ttg t e e   qqG G  ; 

(12) 

   
 T6,024 2,938

2 42,26 38,36j je eG ,       T
2 4,668 42,69 23,28 178,7j jq , 

  T2 21 21T TT , 21 0,050T с,   2 212T 'T
2 2 2( ) Re t Ttg t e e   qqG G  . 

(13) 

 

Filter amplitude-frequency responses and their impulse responses (curve 1 and 2) are shown 
on the fig. 14 and fig. 15. The averaging filters impulse responses as opposed to ones, 
considered above (fig. 13), are asymmetrical. Therefore, the filters with mirror-inverse 
impulse responses (curve 3 and 4) will have the same amplitude-frequency responses in the 
sections 2p j f  , i.e. 3 1 11( ) ( )g t g T t   and 4 2 21( ) ( )g t g T t  . However, filter amplitude-
frequency responses with the numbers 3 and 4 in the section 0p j     significantly differ 
from the analogous amplitude-frequency responses of filters – ancestors (filters 1 and 2).  
Thus, the principal conclusion follows from the above: the use of filter traditional 
amplitude-frequency responses (the section 2p j f  )  for aperiodic signals analysis is not 
effective.  

 

     
Fig. 14. Filter amplitude-frequency response in the section 2p j f    
 

 
Fig. 15. Amplitude-frequency response in the section 0p j     and impulse responses  
 
The principal difference filter 1 from filter 2 consists in the following: in the first case (filter 
1) oscillatory nature of transient process will be observed in the beginning, in the second 
case it will occur after transient process completes in the filter. As it follows from the fig. 16, 
the combined use of filters 1 and 2 with practically identical amplitude-frequency response 
enables to reveal the transient processes in filters (curve 3).  
 

 
Fig. 16. Output signals of FIR filter  
 
Synthesized filters ensure the combination of signal processing high speed and accuracy, 
have a low sensitivity to power system frequency deviation and to disturbance spectrum 
change, and significantly exceed filters, used in PMU 1133A. 
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Let us do synthesis of averaging filter with use of FIR filter generalized model (4) at 2M  , 
according to the requirements in table 6.   
 
№ Name Conditions 

1. 
Changing sizes of filter 
input signal parameters 
(10) 

    1 2 45 55  rad/s,    1 0 2 ,   0 10 1 mX X ,  
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Table 6. Averaging FIR filter synthesis  
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considered as equal. Using different efficiency functions, two averaging FIR filters with 
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on the fig. 14 and fig. 15. The averaging filters impulse responses as opposed to ones, 
considered above (fig. 13), are asymmetrical. Therefore, the filters with mirror-inverse 
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from the analogous amplitude-frequency responses of filters – ancestors (filters 1 and 2).  
Thus, the principal conclusion follows from the above: the use of filter traditional 
amplitude-frequency responses (the section 2p j f  )  for aperiodic signals analysis is not 
effective.  
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The following regularities of time windows for averaging FIR filters can be defined on 
example of filter synthesis for special case 
1. in case of using the cosine time windows and/or time windows (4) at harmonic input 

signals the form of the synthesized windows is similar to symmetrical “bell-shaped” or 
in the form of “hat” (fig. 13); 

2. in case of using the general time windows (4) at necessity of aperiodic disturbance 
elimination the windows with clearly defined asymmetrical form (fig. 15) are obtained.  

Therefore, the fact can be stated, that for processing of compound semi-infinite or finite 
aperiodic input signals it is reasonable to use the FIR filter impulse functions (4). 
Considering the relation between filters and wavelet transforms Koronovskii, 2005, Lyons, 
2004), the conclusion about reasonability of mother and father wavelets synthesis, based on 
the expression (4), can be made. The transition from the mathematical description of 
analogue filter-prototype to digital filter is carried out by one of the following known 
methods with the consideration of analog FIR filter specifics (Mokeev, 2008b).  

 
5. Fast algorithms synthesis of FIR filters and spectrum analyzers  

5.1 FIR filter fast algorithms synthesis, based on generalized  
model of analogue filter-prototype impulse function  
The advantage of using the analogue filter-prototypes with finite impulse response is direct 
synthesis of FIR filter realization fast (recursive) algorithms, according to the chosen 
modified transition method under the table 3.  
The fast (recursive) algorithm for general case, using the first or second synthesis methods, 
is given below 

 ( ) ( ) ( ) ( 1)k x k x k y k    y A B C N D  ,  T( ) Re ( )y k k C y . (14) 

where for the first method   11m m
M

G T T      
A  ,   1' 1m m

M
G T T      

B  , 

  11 m
M

T      
D ,  1 MC ,  m MNN ; for the second method m M

G T   A  , 

'
m M

G T   B  , mT
M

e   D . 

The block scheme of FIR filter (14) fast (recursive) algorithm is represented on the fig. 17, 
where mN

M
z   Z . 

 

 
Fig. 17. FIR filter fast algorithm  
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The fast algorithm (14) expression form, using matrixes, is a compact way of algorithm 
expression, however, there is a system of M-number independent equations in case of 
practical realization.  

 ( ) ( ) ( ) ( 1)m m m m my k a x k b x k N d y k      , (15) 

where  ma , mb , md  - are complex coefficients, which are the m-th elements of  A , B , D  
vectors. 
The fast algorithm (14) or (15) can be directly realized by using DSPs, which include the 
instructions to multiplication with accumulation. At other cases, it is necessary to divide the 
algorithm (15) into two algorithms, which conform to real and imaginary components, i.e. 
two common filters will be realized (Mokeev, 2008b). Another method consists in algorithm 
forming, based on the operation fulfillment  ( ) Re ( )y k y k   . 
In the first case  

 c c c c c s s( ) ( ) ( ) ( 1) ( 1)m m m m m m my k a x k b x k N d y k d y k       ,  

 s s s c s s c( ) ( ) ( ) ( 1) ( 1)m m m m m m my k a x k b x k N d y k d y k       ,  

where c s( ) ( ) ( )m m my k y k jy k   , c sm m ma a ja  ,  c sm m mb b jb  , c sm m md d jd  . 
The second method demands by one multiplication operation less  

0 1 2 3 1 2( ) ( ) ( 1) ( ) ( 1) ( 1) ( 2)m m m m m m m m m m my k c x k c x k c x k N c x k N h y k h y k            . 

The fast algorithms synthesis for digital filters with integer coefficients, based on analogue 
filter-prototype descriptions, is considered in item 5.3.   

   
5.2 Averaging FIR filter fast algorithms synthesis   
One of the most extended problems of digital signal processing in measuring technology is 
connected to FIR filter use, realizing moving-average algorithm (Rabiner, 1975, Vanin, 1991). 
For reducing the computing expenditures, the digital filtering fast algorithms are applied at 
FIR filter implementation, including moving-average filters (Blahut, 1985, Nussbaumer, 
1981, Yaroslavsky, 1984).  
Averaging FIR filters are the special cases for FIR filters. Thus, the fast algorithm synthesis 
method, considered above, should be used for that kind of filter.  
Let us contemplate the most elementary case – rectangular time window. The mathematical 
expression of analog filter-prototype will be   

  1 1( ) 1( ) 1( )g t k t t T   ,  11( ) 1 pTkK p e
p

  ,  
1

1( )
t

t T

y t k x d


   ,   

1T  - is averaging time (window length). 
Using the transition methods from an analog filter-prototype to a digital filter, shown in the 
table 3 , in cases of first and second methods at 1 1 /k T  the following known (Myasnikov, 
2005) fast algorithm of moving-average will be obtained 

 1( ) ( ) ( ) ( 1)y k x k x k N y k     ,    

where 1 1 /N T T . 
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The following regularities of time windows for averaging FIR filters can be defined on 
example of filter synthesis for special case 
1. in case of using the cosine time windows and/or time windows (4) at harmonic input 

signals the form of the synthesized windows is similar to symmetrical “bell-shaped” or 
in the form of “hat” (fig. 13); 

2. in case of using the general time windows (4) at necessity of aperiodic disturbance 
elimination the windows with clearly defined asymmetrical form (fig. 15) are obtained.  

Therefore, the fact can be stated, that for processing of compound semi-infinite or finite 
aperiodic input signals it is reasonable to use the FIR filter impulse functions (4). 
Considering the relation between filters and wavelet transforms Koronovskii, 2005, Lyons, 
2004), the conclusion about reasonability of mother and father wavelets synthesis, based on 
the expression (4), can be made. The transition from the mathematical description of 
analogue filter-prototype to digital filter is carried out by one of the following known 
methods with the consideration of analog FIR filter specifics (Mokeev, 2008b).  

 
5. Fast algorithms synthesis of FIR filters and spectrum analyzers  

5.1 FIR filter fast algorithms synthesis, based on generalized  
model of analogue filter-prototype impulse function  
The advantage of using the analogue filter-prototypes with finite impulse response is direct 
synthesis of FIR filter realization fast (recursive) algorithms, according to the chosen 
modified transition method under the table 3.  
The fast (recursive) algorithm for general case, using the first or second synthesis methods, 
is given below 

 ( ) ( ) ( ) ( 1)k x k x k y k    y A B C N D  ,  T( ) Re ( )y k k C y . (14) 

where for the first method   11m m
M
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G T   A  , 

'
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G T   B  , mT
M

e   D . 

The block scheme of FIR filter (14) fast (recursive) algorithm is represented on the fig. 17, 
where mN

M
z   Z . 

 

 
Fig. 17. FIR filter fast algorithm  
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The fast algorithm (14) expression form, using matrixes, is a compact way of algorithm 
expression, however, there is a system of M-number independent equations in case of 
practical realization.  

 ( ) ( ) ( ) ( 1)m m m m my k a x k b x k N d y k      , (15) 

where  ma , mb , md  - are complex coefficients, which are the m-th elements of  A , B , D  
vectors. 
The fast algorithm (14) or (15) can be directly realized by using DSPs, which include the 
instructions to multiplication with accumulation. At other cases, it is necessary to divide the 
algorithm (15) into two algorithms, which conform to real and imaginary components, i.e. 
two common filters will be realized (Mokeev, 2008b). Another method consists in algorithm 
forming, based on the operation fulfillment  ( ) Re ( )y k y k   . 
In the first case  

 c c c c c s s( ) ( ) ( ) ( 1) ( 1)m m m m m m my k a x k b x k N d y k d y k       ,  

 s s s c s s c( ) ( ) ( ) ( 1) ( 1)m m m m m m my k a x k b x k N d y k d y k       ,  

where c s( ) ( ) ( )m m my k y k jy k   , c sm m ma a ja  ,  c sm m mb b jb  , c sm m md d jd  . 
The second method demands by one multiplication operation less  

0 1 2 3 1 2( ) ( ) ( 1) ( ) ( 1) ( 1) ( 2)m m m m m m m m m m my k c x k c x k c x k N c x k N h y k h y k            . 

The fast algorithms synthesis for digital filters with integer coefficients, based on analogue 
filter-prototype descriptions, is considered in item 5.3.   

   
5.2 Averaging FIR filter fast algorithms synthesis   
One of the most extended problems of digital signal processing in measuring technology is 
connected to FIR filter use, realizing moving-average algorithm (Rabiner, 1975, Vanin, 1991). 
For reducing the computing expenditures, the digital filtering fast algorithms are applied at 
FIR filter implementation, including moving-average filters (Blahut, 1985, Nussbaumer, 
1981, Yaroslavsky, 1984).  
Averaging FIR filters are the special cases for FIR filters. Thus, the fast algorithm synthesis 
method, considered above, should be used for that kind of filter.  
Let us contemplate the most elementary case – rectangular time window. The mathematical 
expression of analog filter-prototype will be   
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1T  - is averaging time (window length). 
Using the transition methods from an analog filter-prototype to a digital filter, shown in the 
table 3 , in cases of first and second methods at 1 1 /k T  the following known (Myasnikov, 
2005) fast algorithm of moving-average will be obtained 

 1( ) ( ) ( ) ( 1)y k x k x k N y k     ,    

where 1 1 /N T T . 
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In case of bilinear transformation method application, there will be the following fast 
algorithm  

 1 1( ) ( ) ( 1) ( ) ( 1) ( 1)y k x k x k x k N x k N y k          ,    

At usage of triangle time window, the following fast algorithm of averaging FIR filter 
realization will be obtained  

 1 1( ) ( ) ( 1) 2 ( 1) ( 2 1) 2 ( 1) ( 2)y k x k x k x k N x k N y k y k             .    

The considered moving-average realization algorithms involve recursive computations, as IIR 
filters do. However, the principal difference between them is a finite length of filter impulse 
function. This approach can be also applied to more complicated types of digital filters, 
including filters, which assure the moving-average computation in case of using different 
kinds of time windows (Mokeev, 2008a, 2008b, 2009c). The issues about averaging digital filter 
fast algorithms synthesis, based on given analog filter-prototype (13), considering the 
microprocessor finite digit capacity influence (Mokeev, 2008a), are investigated.    

 
5.3 FIR filter fast algorithms synthesis, considering  
microprocessor finite digit capacity  
The stability requirements for the discrete filter (5) at any value of FIR filter system function poles 

( )K z are always ensured. The situation can be changed in case of filter coefficients quantization - 
at failed coefficient selection, instead of FIR filter IIR filter will be obtained. At negative real 
components of filter impulse function complex frequencies it is important to assure the filter 
impulse function level being out of its length is less than a value, specified before. 
During the digital FIR filters designing, particular attention should be given to ensuring the 
impulse response finiteness and filter stability in case, that at least one complex frequency of 
filter impulse function has a positive real component, as an unstable filter can be obtained at 
filter coefficients quantization.  
Let us consider an example of digital FIR filter synthesis for DSP with the support to fixed 
point data operations (four numbers to the left of the decimal point). In case of using the 
method of invariant impulse responses, based on the analogue filter-prototype (13) at 

500T   microseconds, the following fast algorithm will be obtained  
           

                     

 
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1 1

2 2

( ) 0,0171 0,0364 0,0049 0,0115 (0,9881 0,0308) ( 1)
( ) ( 102)

( ) 0,0158 0,0105 0,0045 0,0037 (0,9841 0,0922) ( 1)
y k j j j y k

x k x k
y k j j j y k

. 

The fast algorithm efficiency is 17 times higher, than algorithm, based on discrete 
convolution realization with DSP support of complex multiplication/accumulation 
operations has, and 9 times higher in case of using the ordinary DSPs. 
Fast algorithm synthesis for digital filters with integer coefficients is an ambiguous problem, 
which can be simpler solved by several iterations on the basis of the following expression 

 
3

( ) ( ) ( 1)( ) n n n n n
n

x k x k y kk
m

   

A B C N Dy


,  

where   1Intn mA A ,   2Intn mB B ,   1Intn mD D , Int  - is an operator, taking an 
integral part of the number, ( )nx k - is an input signal, considering amplitude quantization, 

1m , 2m , 3m - are scale integer coefficients. 

 

To assure the finite duration of impulse response, the following conditions are required to 
be fulfilled  

    T T
1 2Int Int 0Nm m A z B C .   

The following averaging filter fast algorithm with the integer coefficients is obtained for the 
considered synthesis problem 
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
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. 

The output signals for analog and digital signal processing system (fig. 11), using the 
averaging FIR filters, mentioned above (two filters for real and imaginary signal components 

( )y t  or ( )y k processing), for first harmonic module measuring 1( )X t  and 1( )X k  are shown 

on the fig 18. Digital and analog signal graphs are reduced to digital signal scale. 
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Fig. 18. Output signal  

 
5.4 Fast algorithms synthesis of non-stationary FIR filter with  
using of the state space method  
The expression for FIR filter (14) fast algorithm along with the mathematical description of 
analogue filter-prototype (7) can be interpreted as a definition, based on filter spectral 
representations in complex frequency coordinates, and as exposition on the basis of the state 
space method (Mokeev, 2008b). As is known, the advantage of the state space method 
consists in mathematical descriptions similarity of stationary and non-stationary systems. 
Thus, the expression for non-stationary filters can be obtained and interpreted by analogy 
on the basis of this approach. At that, the matrixes A , B  and D will be time dependent  

      ( ) ( ) ( ) ( ) 1k k x k k x k k k    y A B C N D y  . (16)

The algorithm for non-stationary filter with periodic coefficients, which is used for fast Fourier 
transform realization (Mokeev, 2008b), can be obtained on the basis of the expression above (16)  

        ( ) ( ) 1k k x k k N x k N k     X W W X  , (17) 

where ( ) mj kT
M

k T e    W , 0m m   , 
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2N
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


,  m kX - is spectral density of the signal 

1 1( ) ,  ( )X t X k 

,  t kT
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In case of bilinear transformation method application, there will be the following fast 
algorithm  

 1 1( ) ( ) ( 1) ( ) ( 1) ( 1)y k x k x k x k N x k N y k          ,    

At usage of triangle time window, the following fast algorithm of averaging FIR filter 
realization will be obtained  
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The considered moving-average realization algorithms involve recursive computations, as IIR 
filters do. However, the principal difference between them is a finite length of filter impulse 
function. This approach can be also applied to more complicated types of digital filters, 
including filters, which assure the moving-average computation in case of using different 
kinds of time windows (Mokeev, 2008a, 2008b, 2009c). The issues about averaging digital filter 
fast algorithms synthesis, based on given analog filter-prototype (13), considering the 
microprocessor finite digit capacity influence (Mokeev, 2008a), are investigated.    

 
5.3 FIR filter fast algorithms synthesis, considering  
microprocessor finite digit capacity  
The stability requirements for the discrete filter (5) at any value of FIR filter system function poles 

( )K z are always ensured. The situation can be changed in case of filter coefficients quantization - 
at failed coefficient selection, instead of FIR filter IIR filter will be obtained. At negative real 
components of filter impulse function complex frequencies it is important to assure the filter 
impulse function level being out of its length is less than a value, specified before. 
During the digital FIR filters designing, particular attention should be given to ensuring the 
impulse response finiteness and filter stability in case, that at least one complex frequency of 
filter impulse function has a positive real component, as an unstable filter can be obtained at 
filter coefficients quantization.  
Let us consider an example of digital FIR filter synthesis for DSP with the support to fixed 
point data operations (four numbers to the left of the decimal point). In case of using the 
method of invariant impulse responses, based on the analogue filter-prototype (13) at 

500T   microseconds, the following fast algorithm will be obtained  
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The fast algorithm efficiency is 17 times higher, than algorithm, based on discrete 
convolution realization with DSP support of complex multiplication/accumulation 
operations has, and 9 times higher in case of using the ordinary DSPs. 
Fast algorithm synthesis for digital filters with integer coefficients is an ambiguous problem, 
which can be simpler solved by several iterations on the basis of the following expression 
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where   1Intn mA A ,   2Intn mB B ,   1Intn mD D , Int  - is an operator, taking an 
integral part of the number, ( )nx k - is an input signal, considering amplitude quantization, 

1m , 2m , 3m - are scale integer coefficients. 

 

To assure the finite duration of impulse response, the following conditions are required to 
be fulfilled  

    T T
1 2Int Int 0Nm m A z B C .   

The following averaging filter fast algorithm with the integer coefficients is obtained for the 
considered synthesis problem 
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The output signals for analog and digital signal processing system (fig. 11), using the 
averaging FIR filters, mentioned above (two filters for real and imaginary signal components 

( )y t  or ( )y k processing), for first harmonic module measuring 1( )X t  and 1( )X k  are shown 

on the fig 18. Digital and analog signal graphs are reduced to digital signal scale. 
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Fig. 18. Output signal  

 
5.4 Fast algorithms synthesis of non-stationary FIR filter with  
using of the state space method  
The expression for FIR filter (14) fast algorithm along with the mathematical description of 
analogue filter-prototype (7) can be interpreted as a definition, based on filter spectral 
representations in complex frequency coordinates, and as exposition on the basis of the state 
space method (Mokeev, 2008b). As is known, the advantage of the state space method 
consists in mathematical descriptions similarity of stationary and non-stationary systems. 
Thus, the expression for non-stationary filters can be obtained and interpreted by analogy 
on the basis of this approach. At that, the matrixes A , B  and D will be time dependent  

      ( ) ( ) ( ) ( ) 1k k x k k x k k k    y A B C N D y  . (16)

The algorithm for non-stationary filter with periodic coefficients, which is used for fast Fourier 
transform realization (Mokeev, 2008b), can be obtained on the basis of the expression above (16)  

        ( ) ( ) 1k k x k k N x k N k     X W W X  , (17) 
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,  m kX - is spectral density of the signal 
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( )x t on the basis of short-time Fourier transform application on the frequency 0m , using 
rectangular time window. 
Each component of the equation (17) is an analyzer of instantaneous signal spectrum on the 
specified frequency m . 
The fast algorithm of spectrum analyzer (17) has incontestable advantages over the FFT at 

5N  (Mokeev, 2008b). At that, it should be noted, that spectral density computation 
algorithm, as opposed to FFT, is not connected to the number of spectral density values and 
to uniform frequency scale. 
The non-stationary filter algorithm with the periodic coefficients (17) is a special case of 
more general algorithm (16), which can be applied to describe more complicated types of 
filters, including adaptive digital filters.  

 
5.5 Synthesis of spectrum analyzer fast algorithms  
The spectrum analyzers, based on short-time Fourier transform, can be realized in different 
ways, including using the fast Fourier transform algorithms (Rabiner, 1975, Blahut, 1985, 
Nussbaumer, 1981).  
The fast algorithms of mentioned spectrum analyzers can be also obtained on the basis of 
the approaches, considered in this chapter, including the non-stationary filter algorithm (17) 
with the periodic coefficients, which was contemplated above.  
Another approach is based on subdividing the expression for the short-time Fourier 
transform on the specified frequency into two main operations: multiplication by complex 
exponent and further using the averaging filter. The issues of averaging FIR filter fast 
algorithms synthesis were considered in items 5.1 and 5.3.  
The third approach is connected to using FIR filter fast algorithms with the orthogonal 
impulse functions (Mokeev, 2008b). 
Let us consider the problems of fast spectrum analyzers synthesis in complex frequency 
coordinates. Two methods of fast spectrum analyzers realization on complex frequency 
coordinates, overcoming the difficulties of direct short-time Laplace transform 
implementation, are offered by the author in this paper (Mokeev, 2008b). The first method is 
based on using the FIR filter fast algorithms (4), as each finite component of filter with 
generalized impulse function makes spectrum analysis on the specified complex frequency. 
The second method is connected to partitioning the expression for short-time Laplace 
transform on the given frequency into two basic operations: multiplication by complex 
exponent and further using the averaging filter with the transfer of exponential window to 
averaging filter (Mokeev, 2008b).  
Considered approaches to FIR filter fast algorithms synthesis can be apply also for the case of 
wavelet transform fast algorithms, as is known, that wavelet transform is identical with the 
reconstructed FIR filter with the frequency responses, similar to band pass filter (Mokeev, 2008b). 

 
6. Conclusion 

It is shown in this chapter, that for many practical tasks it is reasonable to use the similar 
generalized mathematical models of analog and digital filter input signals and impulse 
functions in the form of a set of continuous/discrete semi-infinite or finite damped 

 

oscillatory components. To express signals and filters, it is sufficient to exercise the vectors 
of complex amplitudes and complex frequencies, and also time delay vectors.   
For the signal and filter models, mentioned above, it is rational to use the spectral 
representations of the Laplace transform, in which the damped oscillatory component is a 
base transform function. Three new methods of analog and digital IIR and FIR filters 
analysis at semi-infinite and finite input signals were presented on the basis of the research 
into the spectral representations features of signal and filter frequency responses in complex 
frequency coordinates. The advantages of offered analysis methods consist in calculation 
simplicity, including solving problems of direct determination the performance of signal 
processing by frequency filters.  
The application of spectral representations in complex frequency coordinates enables to combine 
the spectral approach and the state space method for frequency filter analysis and synthesis.  
Spectral representations and linear system usage, based on Laplace transform, allow to 
ensure the effective solution of robust IIR and FIR filters synthesis problems. The filter 
synthesis problem instead of setting the requirements to separate areas of frequency 
response (pass band and rejection band) comes to dependence composition for filter transfer 
function on complex frequencies of input signal components. The synthesis is carried out 
with the growth of impulse function components number till the specified signal processing 
performance will be achieved.  
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( )x t on the basis of short-time Fourier transform application on the frequency 0m , using 
rectangular time window. 
Each component of the equation (17) is an analyzer of instantaneous signal spectrum on the 
specified frequency m . 
The fast algorithm of spectrum analyzer (17) has incontestable advantages over the FFT at 

5N  (Mokeev, 2008b). At that, it should be noted, that spectral density computation 
algorithm, as opposed to FFT, is not connected to the number of spectral density values and 
to uniform frequency scale. 
The non-stationary filter algorithm with the periodic coefficients (17) is a special case of 
more general algorithm (16), which can be applied to describe more complicated types of 
filters, including adaptive digital filters.  

 
5.5 Synthesis of spectrum analyzer fast algorithms  
The spectrum analyzers, based on short-time Fourier transform, can be realized in different 
ways, including using the fast Fourier transform algorithms (Rabiner, 1975, Blahut, 1985, 
Nussbaumer, 1981).  
The fast algorithms of mentioned spectrum analyzers can be also obtained on the basis of 
the approaches, considered in this chapter, including the non-stationary filter algorithm (17) 
with the periodic coefficients, which was contemplated above.  
Another approach is based on subdividing the expression for the short-time Fourier 
transform on the specified frequency into two main operations: multiplication by complex 
exponent and further using the averaging filter. The issues of averaging FIR filter fast 
algorithms synthesis were considered in items 5.1 and 5.3.  
The third approach is connected to using FIR filter fast algorithms with the orthogonal 
impulse functions (Mokeev, 2008b). 
Let us consider the problems of fast spectrum analyzers synthesis in complex frequency 
coordinates. Two methods of fast spectrum analyzers realization on complex frequency 
coordinates, overcoming the difficulties of direct short-time Laplace transform 
implementation, are offered by the author in this paper (Mokeev, 2008b). The first method is 
based on using the FIR filter fast algorithms (4), as each finite component of filter with 
generalized impulse function makes spectrum analysis on the specified complex frequency. 
The second method is connected to partitioning the expression for short-time Laplace 
transform on the given frequency into two basic operations: multiplication by complex 
exponent and further using the averaging filter with the transfer of exponential window to 
averaging filter (Mokeev, 2008b).  
Considered approaches to FIR filter fast algorithms synthesis can be apply also for the case of 
wavelet transform fast algorithms, as is known, that wavelet transform is identical with the 
reconstructed FIR filter with the frequency responses, similar to band pass filter (Mokeev, 2008b). 

 
6. Conclusion 

It is shown in this chapter, that for many practical tasks it is reasonable to use the similar 
generalized mathematical models of analog and digital filter input signals and impulse 
functions in the form of a set of continuous/discrete semi-infinite or finite damped 

 

oscillatory components. To express signals and filters, it is sufficient to exercise the vectors 
of complex amplitudes and complex frequencies, and also time delay vectors.   
For the signal and filter models, mentioned above, it is rational to use the spectral 
representations of the Laplace transform, in which the damped oscillatory component is a 
base transform function. Three new methods of analog and digital IIR and FIR filters 
analysis at semi-infinite and finite input signals were presented on the basis of the research 
into the spectral representations features of signal and filter frequency responses in complex 
frequency coordinates. The advantages of offered analysis methods consist in calculation 
simplicity, including solving problems of direct determination the performance of signal 
processing by frequency filters.  
The application of spectral representations in complex frequency coordinates enables to combine 
the spectral approach and the state space method for frequency filter analysis and synthesis.  
Spectral representations and linear system usage, based on Laplace transform, allow to 
ensure the effective solution of robust IIR and FIR filters synthesis problems. The filter 
synthesis problem instead of setting the requirements to separate areas of frequency 
response (pass band and rejection band) comes to dependence composition for filter transfer 
function on complex frequencies of input signal components. The synthesis is carried out 
with the growth of impulse function components number till the specified signal processing 
performance will be achieved.  
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Abstract 

This paper develops a design of two-dimensional (2D) digital filter with monotonic 
amplitude-frequency responses using Darlington-type gyrator networks by the application 
of Generalized Bilinear Transformation (GBT). The proposed design provides the stable 
monotonic amplitude-frequency responses and the desired cutoff frequency of the 2D 
digital filters. This 2D recursive digital filter design includes 2D digital low-pass, high-pass, 
band-pass and band-elimination filters. Design examples are given to illustrate the 
usefulness of the proposed technique. 
Index Terms— Stability, monotonic response, GBT, gyrator network. 

 
1. Introduction 

Because of recent growth in the 2D signal processing activities, a significant amount of 
research work has been done on the 2D filter design [1] and it is seen that monotonic 
characteristics in frequency response of a filter is getting more popular. The filters with the 
monotonic characteristics are one of the best filters for the digital image, video and audio 
(enhancement and restoration) [2]. The filters are widely accepted in the applications of 
medical science, geographical science and environment, space and robotic engineering [1]. 
For example, medical applications are concerned with processing of chest X-Ray, cine 
angiogram, projection of frame axial tomography and other medical images that occurs in 
radiology, nuclear magnetic resonance (NMR), ultrasonic scanning and magnetic resonance 
imaging (MRI) etc. and the restoration and enhancement of these images are done by the 2D 
digital filters [3].  
 
The design of 2D recursive filters is difficult due to the non-existence of the fundamental 
theorem of algebra in that the factorization of 2D polynomials into lower order polynomials 
and the testing for stability of a 2D transfer function (recursive) requires a large number of 

3
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computations. But, the major drawbacks of the recursive filters are their lower-order 
realizations and computational intensive design techniques. Several design techniques of 2D 
recursive filter have been reported in the literature [2], [4] – [9] and most of these designs 
have problems of computational complexity, stability and unable to provide variable 
magnitude monotonic characteristic. A design technique of 2D recursive filters have been 
shown which met simultaneously magnitude and group delay specifications [4], although 
the technique has the advantage of always ensuring the filter stability, the difficulties to be 
encountered are computational complexity and convergence [5]. In [6], 2D filter design as a 
linear programming problem has been proposed, but, this tends to require relatively long 
computation time. In [7], a filter design has been shown using the two specifications as the 
problem of minimizing the total length of modified complex errors and minimized it by an 
iterative procedure. Difficulties of the design obtain for two-dimensional stability testing at 
each iteration during the minimization procedure. 
One way to ensure a 2D transfer function is stable is if the denominator of the transfer 
function is satisfied to be a Very Strict Hurwitz Polynomial (VSHP) [8] and that can ensure a 
transfer function that there is no singularity in the right half of the biplane, which can make 
a system unstable.  In [9]-[11], stable 2D recursive filters have been designed by generation 
of Very Strict Hurwitz Polynomial (VSHP), but it is not guaranteed to provide the stable 
monotonic amplitude-frequency responses. Several filter designs with monotonic amplitude 
frequency response has been reported [12] – [16], but to the best of our knowledge, filter 
design with variable monotonic amplitude frequency response is not proposed yet. 
In this paper, 2-D digital filters with variable monotonic amplitude frequency responses are 
designed starting from Darlington-type networks containing gyrators and doubly-
terminated RLC-networks. The extension of Darlington-synthesis to two-variable positive 
real functions is given in [17], [18]; but they do not contain gyrators. From the 2-D stable 
transfer functions so obtained, the GBT [19] is applied to obtain 2-D digital functions and 
their properties are studied. The designed filters are used in the image processing 
application. 

 
2. THE TWO BASIC STRUCTURES CONSIDERED 
Two filter structures are considered for 2D digital recursive filters design and both 
structures are taken from Darlington-synthesis [20]. Figures 1(a) and (b) show the two 
structures considered in this paper. 
The impedances of the filters are replaced by doubly-terminated RLC filters and the overall 
transfer function will be of the form 
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where the coefficients of H(s1,s2,g) are functions of g.  
 

 
(a) Filter 1                                   (b) Filter 2 

Fig. 1. Doubly terminated gyrator filters. 
 
In this paper, second-order Butterworth and Gargour & Ramachandran filters [19] are 
considered as doubly terminated RLC networks. For simplicity, each gyrator network is 
classified into three cases, such as the impedances of gyrator network are replaced by the 
second-order Butterworth filter and Gargour & Ramachandran filter are called case-I and 
case-II respectively. The impedances of gyrator network are replaced by second-order 
Butterworth and Gargour & Ramachandran filters is called case-III.  

 
3. Filter 1 

Transfer functions of case-I, case-II and case-III of Filter 1 (Figure 1(a)) provide stable 
functions, when denominators of the cases are VSHPs. This can be verified easily by the 
method of Inners [21]. The impedances of the cases are modified by first applying the GBT 
given by  
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computations. But, the major drawbacks of the recursive filters are their lower-order 
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iterative procedure. Difficulties of the design obtain for two-dimensional stability testing at 
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transfer function that there is no singularity in the right half of the biplane, which can make 
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monotonic amplitude-frequency responses. Several filter designs with monotonic amplitude 
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transfer functions so obtained, the GBT [19] is applied to obtain 2-D digital functions and 
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and the impedance of a capacitor becomes 
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For example, the transfer function of the case-I represents as 
 

 T

T
gssGH

2

2),2,1(1 S2R1S

S1R1S               (5)                          

 
where,     

 2111 ss1S ,    2221 ss2S , 
 
























225.01.325.15.1

2321.95.123.0)2(2.47.0

25.122.47.07.0)21(2

ggggg
ggggg
ggggg

1R , 
























222.324.021.272.0

2326.992.024.68.2

24.124.41)21(3

ggg
ggg

ggg

2R  

The coefficients are dependent on the value and sign of ‘g’. 
 
The GBT [19] is applied to the transfer function (5) and it is shown that the 2D digital low-
pass filters are obtained for the lower values of g and the 2D digital high-pass filters are 
obtained for the higher values of g. But the amplitude-frequency response of the Filter 1 is 
constant for g = 1.  
If monotonicity in the magnitude response is desired, the values of ai, bi and ki have to be 
adjusted and these are given in Table 1. Figure 2 shows the 3-D magnitude plot of such a 
low-pass filter. 
 

g  ai  bi Case-I Case-II Case-III 

0.001 -0.9 0.9 0.09>ki>0 82 > ki >0 0.1>ki>0 

0.001 -0.9 0.5 0.4>ki>0 1.5> ki > 0 0.9>ki>0 

0.001 -0.5 0.9 205>ki>0 95 > ki > 0 100>ki>0 

Table 1. The ranges of ik  satisfy the monotonic characteristics in the amplitude-frequency 
response of 2D Low-passFilter (Filter 1). 
 

-4
-2

0
2

4

-4

-2

0

2

4
0.2

0.4

0.6

0.8

1

1 (rad/sec)

3D Magnitude Plot

2 (rad/sec)

M
ag

ni
tu

de

 
Fig. 2. 3D magnitude plot and contour plot of the 2D digital low-pass filter  (Filter 1) when  
g = 0.01. 

 
4. Filter 2 

The impedances Z1, Z2 and Z3 of Filter 2 (Fig.1(b)) are replaced by impedances of the second-
order RLC filters. The resultant transfer function is unstable, because, the denominator is 
indeterminate [8]. 
 
In order to generate a stable analog transfer function HMB2(s1,s2,g), the impedances Z1 and Z2 
of Filter 2 (Figure 1(b)) are replaced by the impedances of the second-order RLC filters and 
the third impedance (Z3) is replaced by a resistive element. As a result, the denominator of 
the case-I, case-II and case-III of Filter 2 are VSHPs. 
 
Transfer function of the case-I (Filter 2) is represented as 
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The coefficients of numerator are dependent on the value and sign of  ‘g’, but the coefficients 
of denominator are dependent only the value of  ‘g’. 
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Fig. 2. 3D magnitude plot and contour plot of the 2D digital low-pass filter  (Filter 1) when  
g = 0.01. 
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The GBT [19] is applied to (6) and it is shown that the 2D digital low-pass filters are 
obtained for the lower values of g, the 2D digital high-pass filters are obtained for the higher 
values of g and inverse filter responses are obtained for the opposite sign of g. 
 
If monotonicity in the magnitude response is desired, the values of g, ai, bi and ki have to be 
adjusted and these are given in Table 2 and Table 3. Figure 3 shows the 3-D magnitude plot 
of such a high-pass filter. 
 

g   ai   bi  Case-I Case-II Case-III 
0.01 -0.9 0.9 0.2 > ki >0 0.2 > ki > 0 0.2 > ki > 0 
0.01 -0.9 0.5 0.7 > ki > 0 0.6 > ki > 0 0.5 > ki > 0 
0.01 -0.5 0.9 4 > ki > 0 3> ki >0 3.2 > ki >0 

Table 2. The ranges of ik  satisfy the monotonic characteristics in the amplitude-frequency 
response of 2D Low-passFilter (Filter2). 
 

ai bi ki Case-I (Filter 1) Case-I (Filter 2) 
-0.1 0.1 1 0.3 >g ≥ 0 ∞ >g ≥ 0, 0.4 >g ≥ -0.1 
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Fig. 3. 3D magnitude plot and contour plot of the 2D digital high-pass filter  (Filter 2) when 
g = -0.7. 

5. Band-pass and band-elimination filters 

In order to design the 2D digital band-pass and band-elimination filter, the following GBT 
[23] is applied to a stable analog transfer function.  
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Fig. 4. 3D magnitude plot 2D digital band-pass filter  (g =-001). 
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Fig. 5. 3D magnitude plot of the 2D digital band-elimination filter (g = -0.5) 
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The GBT [19] is applied to (6) and it is shown that the 2D digital low-pass filters are 
obtained for the lower values of g, the 2D digital high-pass filters are obtained for the higher 
values of g and inverse filter responses are obtained for the opposite sign of g. 
 
If monotonicity in the magnitude response is desired, the values of g, ai, bi and ki have to be 
adjusted and these are given in Table 2 and Table 3. Figure 3 shows the 3-D magnitude plot 
of such a high-pass filter. 
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Fig. 3. 3D magnitude plot and contour plot of the 2D digital high-pass filter  (Filter 2) when 
g = -0.7. 
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Fig. 4. 3D magnitude plot 2D digital band-pass filter  (g =-001). 
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The 2D digital band-pass filters and the 2D digital band-elimination filters are obtained 
depending on the values and sign of g which is shown in Table 4. Figures 4 and 5 show the 
3D magnitude plots of the digital band-pass and band-elimination filter respectively, which 
are obtained from Case-I (Filter1) and case-I (Filter2). 

 
6. Digital filter Transformation 

The proposed digital filter transformation provides the low-pass to high-pass filter (Table 5) 
or the band-pass to band-elimination filter (Table 6) or vice-versa transformation by 
regulating the value or sign of g. However, the low-pass to band-pass or the high-pass to 
band-elimination filter or vice versa transformation is obtained by regulating the value or 
sign of g and the parameters of the GBT as shown in Figure 6. In Filter 1, the digital filter 
transformations are obtained by regulating the value of g. However, in Filter 2, the digital 
filter transformations are obtained by regulating the value or sign of g.  
 

 
Fig. 6. Block diagram of the digital filter transformation 
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Table 4. The ranges of g  of the case-I To obtain the 2D digital band-pass and band-
elimination filters.  
 
 
 
 

Filter Low-pass Filter High-Pass Filter 
Case-I (Filter 1) g = 0.01 g =50 
Case-II (Filter 1) g =0.03 g =100 
Case-III (Filter 1) g =0.01 g =115 
Case-I (Filter 2) g = 10 g = -10 
Case-II (Filter 2) g = 8 g = -8 

Case-III (Filter 2) g = 9 g = -9 
Table 5. Digital filter transformation from 2D low-pass filter to high-pass filter. 
 

Filter Band-pass Filter Band-stop Filter 
Case-I (Filter 1)  g = 0.01 g =100 
Case-II (Filter 1)  g =0.03 g =150 
Case-III (Filter 1)  g =0.05 g = 50 
Case-I (Filter 2) g = 5 g = -5 
Case-II (Filter 2) g = 25  g = -25 
Case-III (Filter 2) g = 100 g = -100 

Table 6. Digital filter transformation from 2D band-pass filter to band-elimination filter. 

 
7. Applications 

The designed 2D digital filters can use in the various image processing applications, such as 
image restoration, image enhancement. The band-width of the designed digital filter can be 
controlled by the magnitude of g and the parameters of the GBT. As a result, the 2d digital 
filter provides facilities as required in the image processing applications.  
 
For illustration, a standard image (Lena) (Figure 7 (a)) [1] is corrupted by gaussian noises 
and the degraded image (Figure 7 (b)) is passed through the 2D digital low-pass filters for 
de-noising purposes. Table 7 shows the quality of the reconstructed images is measured in 
term of mean squared error (MSE) [24] and peak signal-to-noise ratio (PSNR) [24] in decibels 
(dB) for the most common gray image [3]. Average PSNR of the reconstructed images are 
obtained by Filter2 is higher than Filter1, but, some cases, Filter1 provides better 
performance than Filter2. Overall, it is seen that the significant amount of noise is reduced 
from a degraded image by the both filters 

 
Filter g  MSEns PSNRns(dB) MSEout PSNRout(dB) 
Case-I (Filter1) 0.001 629.9926 20.1374 257.3906 24.0249 
Case-II (Filter1) 0.001 636.2678 20.0944 257.7424 24.0189 
Case-III (Filter1) 0.001 636.3893 20.0936 273.4251 23.7624 
Case-I (Filter2) 0.001 630.9419 20.1309 256.4292 24.0411 
Case-II (Filter2) 0.001 634.0169 20.1098 244.2690 24.2521 
Case-III (Filter2) 0.001 639.1828 20.0746 253.6035 24.0893 

Table 7. DENOISING EXPERIMENT ON LENA IMAGE (GAUSSIAN NOISE WITH mean = 
0, variance = 0.01 IS ADDED INTO THE IMAGE) 
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Fig. 7.(a) The original image of Lena,  (b) the noisy image with Gaussian noise (variance 
=0.01), (c) the reconstructed image by case I (Filter 1) when g = 0.001 (PSNRout = 24.3337 dB), 
(f) the reconstructed image by case I (Filter 2) when g =0.001 (PSNRout = 24.2287 dB) 

 
8. Conclusion 

A new design of 2-D recursive digital filters has been proposed and it includes low-pass, 
high-pass, band-pass and band-elimination filters using Darlington-type gyrator network. It 
is seen that the behavior of the gyrator filter is changed not only for the values of resistance, 
capacitance and inductance of the filter, but also the value and sign of g. The coefficients of 
the transfer functions of Filter 1 and Filter 2 are function of g. The ranges of g are defined for 
attaining stable monotonic characteristics in the pass-band region, because g has control 
over the frequency responses of the filters.  

 
9. References 

A. K. Jain, Fundamentals of digital image processing, Prentice-Hall, 1989. 
A. S. Sandhu, Generation of 1-D and 2-D analog and digital lowpass filters with monotonic 

amplitude-frequency response, Concordia University, Montreal, QC: M.A.Sc. 
Thesis, 2005.  

R. C. Gonzalez and R. E. Woods, Digital image processing, Prentice-Hall, 2002. 
G. A. Maria and M. M. Fahmy, “lp approximation of the group delay response of one and 

two-dimensional filters," IEEE Trans. Circuits Syst., vol. CAS-21, pp. 431-436, May 
1974. 

S. A. H. Aly and M. M. Fahmy, “Design of two-dimensional recursive digital filters with 
specified magnitude and group delay characteristics," IEEE Trans. Circuits Syst., 
vol. CAS-25, pp. 908-916, Nov. 1978. 

A. T. Chottera and G. A. Jullien, “Design of two-dimensional recursive digital filters using 
linear programming," IEEE Trans. Circuits Syst., vol. CAS-29,, pp. 417-826, Dec. 
1982. 

S. Fallah, Generation of polynominal for application in the design of stable 2-D Filter, 
Concordia Unversity, QC: Ph.D Thesis, June 1988. 

V. Ramachandran and C. S. Gargour, Generation of Very Strict Hurwitz Polynomials and 
Applications in 2-D Filter Design, Multidiemsnional Systems: Signal Processing 
and Modeling Techniques, Academic Press, Inc., Vol.60, 1995. 

V. Ramachandran and M. Ahmadi, “Design of stable 2-D recursive filters by generation of 
VSHP using terminated n-port gyrator networks”, Journal of Franklin Institute,  
Vol.316, pp.373-380, 1983. 

A. U. Haque and V. Ramachandran “A study of designing recursive 2D digiatl filter from an 
analog bridged T-network”, Canadian Conference on Electrical and Computer 
Engineering, pp. 312-315, 2005. 

K. K. Sundaram; V. Ramachandran, “Analysis of the coefficients of generalized bilinear  
transformation in the design of 2D band-pass and band-stop filters and an 
application in image processing”, Canadian Conference on Electrical and Computer 
Engineering, pp. 1233-1236, 2005. 

T. Ueda, N. Aikawa, and Masamitsu, “Design method of analog low-pass filters with 
monotonic characteristics and arbitary flatness", Electronics and Communications 
in Japan, Vol. 82, No.2, pp. 21-29, 1999. 

V. Ramachandran, C. S. Gargour and Ravi P. Ramachandran, “Generation of analog and 
digital transfer functions having a monotonic magnitude response”, IEEE Canadian 
Conference on Electrical and Computer Engineering, Vol. 1, pp. 319-322, 2004. 

I. M. Filanovsky, “A generalization of filters with monotonic magnitude-frequency 
response”, IEEE Transactiond on Circuits and System I : Fundamental Theory and 
Applications, Vol. 46, No. 11, pp. 1382 – 1385, 1999. 

A. Papoulis, “Optimum filter with monotonic response”, Proc IRE, Vol. 46, pp. 606-609, 
1958. 

M. Fukada, “Optimum even order with monotonic response”, IRE Trans. Circuit Theory, 
Vol. CT-6, pp. 277-281, 1959. 

M. Ahmad, H. C. Reddy, V. Ramachandran and M. N. S. Swamy, “Cascade synthesis of a 
class of muiltivariable positive real function”, IEEE Trans. Circuits and Systems, 
Vol.CAS-25, pp.871-878, 1978. 

M. O. Ahmad, K. V. V. Murthy and V. Ramachandran, “Doubly-terminated two-variable 
lossless networks”, Journal of Frankin Institute, Vol.314, Issue 6, pp.381-392, 1982. 

C. S. Gargour, V. Ramachandran, R. P. Ramachandran and F. Awad, “Variable magnitude 
characteristics of 1-D IIR filters by a generalized bilinear transformation”, 43rd 
Midwest Symposium on Circuits and Systems, Michigan State University, U.S.A., 
Session FAP-2, Four pages, August 8-11, 2000. 

D. Hazony, Elements of network synthesis, New York: Reinhold Pub., 1963. 
E. I. Jury, Inners and Stability of Dynamic Systems, John Wiley and Sons, 1984. 



Design of Two-Dimensional Digital Filters Having Variable  
Monotonic Amplitude-Frequency Responses Using Darlington-type Gyrator Networks 63

       
(a)                                        (b) 

      
(c)                                        (d) 

Fig. 7.(a) The original image of Lena,  (b) the noisy image with Gaussian noise (variance 
=0.01), (c) the reconstructed image by case I (Filter 1) when g = 0.001 (PSNRout = 24.3337 dB), 
(f) the reconstructed image by case I (Filter 2) when g =0.001 (PSNRout = 24.2287 dB) 

 
8. Conclusion 

A new design of 2-D recursive digital filters has been proposed and it includes low-pass, 
high-pass, band-pass and band-elimination filters using Darlington-type gyrator network. It 
is seen that the behavior of the gyrator filter is changed not only for the values of resistance, 
capacitance and inductance of the filter, but also the value and sign of g. The coefficients of 
the transfer functions of Filter 1 and Filter 2 are function of g. The ranges of g are defined for 
attaining stable monotonic characteristics in the pass-band region, because g has control 
over the frequency responses of the filters.  

 
9. References 

A. K. Jain, Fundamentals of digital image processing, Prentice-Hall, 1989. 
A. S. Sandhu, Generation of 1-D and 2-D analog and digital lowpass filters with monotonic 

amplitude-frequency response, Concordia University, Montreal, QC: M.A.Sc. 
Thesis, 2005.  

R. C. Gonzalez and R. E. Woods, Digital image processing, Prentice-Hall, 2002. 
G. A. Maria and M. M. Fahmy, “lp approximation of the group delay response of one and 

two-dimensional filters," IEEE Trans. Circuits Syst., vol. CAS-21, pp. 431-436, May 
1974. 

S. A. H. Aly and M. M. Fahmy, “Design of two-dimensional recursive digital filters with 
specified magnitude and group delay characteristics," IEEE Trans. Circuits Syst., 
vol. CAS-25, pp. 908-916, Nov. 1978. 

A. T. Chottera and G. A. Jullien, “Design of two-dimensional recursive digital filters using 
linear programming," IEEE Trans. Circuits Syst., vol. CAS-29,, pp. 417-826, Dec. 
1982. 

S. Fallah, Generation of polynominal for application in the design of stable 2-D Filter, 
Concordia Unversity, QC: Ph.D Thesis, June 1988. 

V. Ramachandran and C. S. Gargour, Generation of Very Strict Hurwitz Polynomials and 
Applications in 2-D Filter Design, Multidiemsnional Systems: Signal Processing 
and Modeling Techniques, Academic Press, Inc., Vol.60, 1995. 

V. Ramachandran and M. Ahmadi, “Design of stable 2-D recursive filters by generation of 
VSHP using terminated n-port gyrator networks”, Journal of Franklin Institute,  
Vol.316, pp.373-380, 1983. 

A. U. Haque and V. Ramachandran “A study of designing recursive 2D digiatl filter from an 
analog bridged T-network”, Canadian Conference on Electrical and Computer 
Engineering, pp. 312-315, 2005. 

K. K. Sundaram; V. Ramachandran, “Analysis of the coefficients of generalized bilinear  
transformation in the design of 2D band-pass and band-stop filters and an 
application in image processing”, Canadian Conference on Electrical and Computer 
Engineering, pp. 1233-1236, 2005. 

T. Ueda, N. Aikawa, and Masamitsu, “Design method of analog low-pass filters with 
monotonic characteristics and arbitary flatness", Electronics and Communications 
in Japan, Vol. 82, No.2, pp. 21-29, 1999. 

V. Ramachandran, C. S. Gargour and Ravi P. Ramachandran, “Generation of analog and 
digital transfer functions having a monotonic magnitude response”, IEEE Canadian 
Conference on Electrical and Computer Engineering, Vol. 1, pp. 319-322, 2004. 

I. M. Filanovsky, “A generalization of filters with monotonic magnitude-frequency 
response”, IEEE Transactiond on Circuits and System I : Fundamental Theory and 
Applications, Vol. 46, No. 11, pp. 1382 – 1385, 1999. 

A. Papoulis, “Optimum filter with monotonic response”, Proc IRE, Vol. 46, pp. 606-609, 
1958. 

M. Fukada, “Optimum even order with monotonic response”, IRE Trans. Circuit Theory, 
Vol. CT-6, pp. 277-281, 1959. 

M. Ahmad, H. C. Reddy, V. Ramachandran and M. N. S. Swamy, “Cascade synthesis of a 
class of muiltivariable positive real function”, IEEE Trans. Circuits and Systems, 
Vol.CAS-25, pp.871-878, 1978. 

M. O. Ahmad, K. V. V. Murthy and V. Ramachandran, “Doubly-terminated two-variable 
lossless networks”, Journal of Frankin Institute, Vol.314, Issue 6, pp.381-392, 1982. 

C. S. Gargour, V. Ramachandran, R. P. Ramachandran and F. Awad, “Variable magnitude 
characteristics of 1-D IIR filters by a generalized bilinear transformation”, 43rd 
Midwest Symposium on Circuits and Systems, Michigan State University, U.S.A., 
Session FAP-2, Four pages, August 8-11, 2000. 

D. Hazony, Elements of network synthesis, New York: Reinhold Pub., 1963. 
E. I. Jury, Inners and Stability of Dynamic Systems, John Wiley and Sons, 1984. 



Digital Filters64

A. Oppenheim and Schafer, Discrete-Time Signal Processing, Englewood Cliffs, NJ: 
Prentice-Hall, 1989. 

C. S. Gargour, V. Ramachandran, and R. P. Ramachandran, “Modification of filter responses 
by the generalized bilinear transformations and the inverse bilinear 
transformations”, IEEE Trans. Circuits Syst., pp. 2043–2046, May 2003.  

A. Netravali and B. Haskell, Digital Pictures: Representation, Compression, and Standards 
(2nd Ed). New York, NY: Plenum Press, 1995. 

 
 
 
 



Common features of analog sampled-data and digital filters design 65

Common features of analog sampled-data and digital filters design
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1. Introduction

Cascade realization of the analog ARC- and digital filters shows more common features. These
relationships are especially evident in comparison of sampled-data and digital filters, namely
biquadratic sections used in cascade design. Aim of this chapter is thus to show, how to
effectively use the mentioned relationships in the optimized design of both the sampled-data
and digital filters.
Here the most important role play possible transformations between sampled-data and digital
biquadratic section structures, application of the sensitivity concept in digital filter design and
optimization of dynamic properties in the digital and sampled-data filters.
The switched-current (SI) circuits were chosen as an "analog counterpart" of the digital filters,
with respect to their full compatibility to the digital VLSI-CMOS technologies, lower supply
voltage and wide dynamic range. In addition, principle of SI-circuit signal processing is rather
similar to the digital ones, therefore arises possibility to use a "digital prototype" for the SI filter
design. On the other hand, some procedures applied in SI filter design can be successfully
applied in the optimized design of digital filters, especially digital biquadratic sections.
Content of the chapter is divided into the following parts:
A short introduction to SI circuit theory and principles of operation. Although the theory of SI
circuits has been described in detail in several publications – see e.g. Toumazou et al. (1993),
Toumazou et al. (1996), we consider appropriate to shortly introduce the basic of operation of
SI circuits for better understanding. The dynamic current mirror, memory cell, integrator and
differentiator are presented as the main building blocks – i.e. blocks indispensable in filter
design.
The next section presents a new universal algorithm suitable for symbolic analysis of all
types of sampled-data filters. The original approach using "memory transistor" or "mem-
ory transconductor" has been introduced in Bičák et al. (1999), Martinek et al. (2003), Bičák &
Hospodka (2006) and was applied in newly developed libraries for symbolic analysis PraSCan
and PraCAn of the MAPLE program.
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The main part of this chapter is an overview of possible biquad realization structures and
follows the previous work Martinek & Tichá (2007). We turn attention to some aspects of the
"digital prototype" approach in sampled-data biquads design. Here the first and second direct
forms of the 2nd-order digital filter were chosen as the prototypes. As a generalization of this
approach the replacement of the memory cells in the basic structure by a simple BD integrator
and differentiator is discussed. The structures obtained were compared in according to their
sensitivity properties, an influence of SI building blocks losses and element values spread.
The results obtained are demonstrated on the examples of the 2nd-order biquad realizations.
The following section of the chapter is devoted to some auxiliary tools, suitable for digital-
and sampled-data filters design.
The first concerns an application of sensitivity approach, a powerful tool in continuous-time
biquadratic sections design. With respect to the discrete-time character of SI- and digital fil-
ters, the "equivalent sensitivities" are derived and used. A more detailed explanation of this
approach has been published in Tichá (2006). The relevance of sensitivity computation in digi-
tal filter design can be more obvious, if we are aware of the correspondence between rounding
errors in "digital area" and tolerances of element values in the "continuous-time area". Therein
the sensitivities represent the measure for possible rounding without loss of the accuracy of
the filter frequency response.
The second useful tool for filter optimized design is a symbolic analysis. The prospective ap-
proach leads via mathematical programs oriented to the symbolic mathematics. A suitable
program for this purpose seems to be MAPLE, especially developed for symbolic computa-
tions. The symbolic analysis of analog circuits is supported in MAPLE by SYRUP library Riel
(2007) and newly developed libraries PraSCan and PraCAn – see Bičák et al. (1999) and Bičák
& Hospodka (2006). All the libraries represent simple, but very efficient universal tool for cir-
cuit analysis, similar to the SPICE program in numerical area. The mentioned libraries allow
simple modeling of the basic building blocks of digital filters - i.e. memory cells, summers
and multipliers. Usage of the extended library is demonstrated on the analysis of some typ-
ical examples of digital filters, represented by block diagrams. It is important to say, that the
obtained transfer functions H(z) can be easily post-processed in MAPLE environment and
used for the optimized design of the simulated subsystems.
The final section summarizes the results achieved and the usefulness of the presented princi-
ples of optimized analog filter design usage in "digital area".

2. The basic of Switched-Currents technique

Switched-currents (SI), as the latest technique for sampled-data analogue circuits, play an im-
portant role in modern electronic system design. In comparison to switched-capacitor circuits,
SI have some important advantages, particularly full compatibility to the digital VLSI-CMOS
technologies, lower supply voltage and wider dynamic range, as mentioned in the previous
section.
The basic SI-cell is shown in Fig 1. Switches S1 – S3 are controlled by 2-phase switching signal.
A principle of operation corresponds to the current mirror - during phase φ1 are switched S1
and S2 and circuit operates as the input of current mirror with low input resistance (input
current iin(nT)). The second phase φ2 is a storage (or output) phase – S3 is closed and output
current iout(nT+1/2) flows into load. The function is characterized by equations Eq. (1) and (2).
To obtain transfer function H(z) = z−1, it is necessary to use two basic cells connected in
cascade, as shown in Fig. 2. Here is simultaneously shown, how to realize multiple outputs
with different transfer gain constants.

Fig. 1. The basic SI-cell

iout(nT+1/2) = iin(nT) (1)

H(z) =
Iout(z)
Iin(z)

= z−1/2 (2)

Output terminal out 1 pertains to the ”pure” memory cell, created by transistors M 1 and M 2
and switches S1 to S5. Outputs out 2 and out 3 combine the second basic cell (transistor M 2)
together with transistors M 3 and M 4 creating ”conventional” current mirrors. Such arrange-
ment allows setting the gain constant αi, i=1,2 in the form (3) and (4), where Wk, Lk denote the
channel width and length of transistor M k, k=2,3,4. Note that ratios W/L can be normalized
with respect to the channel parameters of the basic cell transistor - (in our case M 2).

H2(z) =
Iout 2(z)
Iin(z)

= α1 z−1 ; α1 =
W3/L3
W2/L2

, (3)

H3(z) =
Iout 3(z)
Iin(z)

= α2 z−1 ; α2 =
W4/L4
W2/L2

. (4)

Fig. 2. Multiple-output SI memory cell

Higher-level blocks, as integrator and differentiator, can be derived from the memory cell by
simple modification. In the case of integrator the output current samples are added to in-
put, together with input signal. Resulting circuit diagram is shown in Fig. 3. Output signal
is obtained under Eq. (5), corresponding to the ”standard” backward-difference discrete inte-
gration. Corresponding transfer function is defined by Eq. (6).
If the switching phase of the switch S1 is changed into φ2, we obtain forward difference in-
verting integrator, whose transfer function is expressed by formula (7).
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SI have some important advantages, particularly full compatibility to the digital VLSI-CMOS
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section.
The basic SI-cell is shown in Fig 1. Switches S1 – S3 are controlled by 2-phase switching signal.
A principle of operation corresponds to the current mirror - during phase φ1 are switched S1
and S2 and circuit operates as the input of current mirror with low input resistance (input
current iin(nT)). The second phase φ2 is a storage (or output) phase – S3 is closed and output
current iout(nT+1/2) flows into load. The function is characterized by equations Eq. (1) and (2).
To obtain transfer function H(z) = z−1, it is necessary to use two basic cells connected in
cascade, as shown in Fig. 2. Here is simultaneously shown, how to realize multiple outputs
with different transfer gain constants.
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Higher-level blocks, as integrator and differentiator, can be derived from the memory cell by
simple modification. In the case of integrator the output current samples are added to in-
put, together with input signal. Resulting circuit diagram is shown in Fig. 3. Output signal
is obtained under Eq. (5), corresponding to the ”standard” backward-difference discrete inte-
gration. Corresponding transfer function is defined by Eq. (6).
If the switching phase of the switch S1 is changed into φ2, we obtain forward difference in-
verting integrator, whose transfer function is expressed by formula (7).
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Fig. 3. Non-inverting BD integrator

iout(nT) = iin(nT−1) + iout(nT−1) =
∞

∑
n=1

iin(nT) ;

(5)

HBD(z) =
Iout(z)
Iin(z)

= α
z−1

1 − z−1 ; (6)

HFD(z) =
Iout(z)
Iin(z)

= −α
1

1 − z−1 . (7)

In contrast to the SC- and continuous-time technique there are no problems with realization
of differentiator SI building blocks. A simple example of Si-implementation is shown in Fig. 4.
Similarly to an integrator, the differentiator was derived from the digital prototype using
equation Eq. (8). Note that the simplified inverting BD differentiator (α = 1) can be gained
by removing the input current mirror (M1 and M2 transistors).

Fig. 4. Non-inverting BD differentiator

∂ i(t)
∂ t

=
∆ i(t)

∆ t
=

inT − inT−1
T

; (8)

HBD(z) =
Iout(z)
Iin(z)

= α (1 − z−1) ; (9)

Similarly it is possible to create other SI-building blocks, suitable for current-mode signal pro-
cessing. It is important to say, that presented schematics correspond to the simplest models
of the “real” circuits, without discussion of their real implementation, behavior and further
improvements. This is not topic of this chapter. More about SI-circuits and their applications
can be found in Toumazou et al. (1993), Toumazou et al. (1996), Mucha (1999), Šubrt (2003),
and others.

3. A symbolic analysis of SI circuits

This section describes method of SI circuit analysis based on modified algorithm for switched
capacitor circuits, especially for symbolic analysis of idealized circuit. It made it more univer-
sal and useful - see Bičák et al. (1999).
The circuit description is based on modified nodal-charge equations - Kurth & Moschytz
(1979); Yuan & Opal (2003); making possible to include resistive elements. The simple trans-
formation of charges into currents is the main goal of the developed procedure. This leads to
the correct evaluation of nodal voltages in the case of SI circuit. Modified capacitance matrix
is possible to use for description of the switched-current (SI) basic cell and complex SI circuit
by this way. Let us consider basic configuration of dynamic current-mirror shown in Fig. 5.

(a) Basic SI-cell (b) Linearized model

Fig. 5. Basic cell of SI circuits and linearized model.

To accomplish the starting conditions of the charge-voltage description, the SI cell is modeled
by voltage controlled charge source (instead of current source) with transfer gain gQ, memory
capacitor C and ideal switches. The gain gQ has the same numeric value as the transistor
transconductance gm, but different unit. Modified model is shown in Fig. 6.

Fig. 6. Model of SI cell used for analysis by charge-voltage equations.

The resultant capacitance matrix of the SI cell model in Fig. 6 can be written in the following
form




Qi1

Qo2

0


 =




C + gQ 0 −z−1/2C
0 0 gQ

−z−1/2C 0 C


×




V11

V22

U4l


 (10)
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The charge transfer from phase φ1 to phase φ2 is than

HQ =
Qo2

Qi1

= −
gQ z−1/2

gQ + C(1 − z−1)
. (11)

The transfer function HQ contains additional terms, corresponding "parasitic" changes of
memory capacitor charge. This effect can be eliminated in idealized circuit description by
minimizing capacitance C. When C → 0, the equation (11) limits into the correct known
formula (2)

Hid = lim
C→0

H = −z−1/2 (12)

In fact, the described procedure corresponds to the charge → current transformation in the
circuit description (in other words, "charge is divided by time"). In this case, the "starting"
description of VCCS by voltage controlled charge source can be turned back (gQ → gm)1 and
original nodal voltage-charge description changes into voltage-current equations. Note that
presented transformation does not change the numeric value of VCCS gain (transconductance
gm).
It is important to say, the procedure of capacitance zeroing should be performed as the last
step of transfer evaluation to avoid the complication in description of phase-to-phase energy
transfer. The symbolic or special case of semi-symbolical analysis is necessary with respect to
correct simulation result. This fact limits the described method of memory capacitor zeroing.
This problem can be solved by special model of the SI cell shown in following figure, Fig. 7.

Fig. 7. Model of SI cell with separator.

This circuit can be described by following equations in matrix representation.



Qi1

0
Qo2

0
0



=




0 gQ 0 0 0
1 −1 0 0 0
0 0 0 gQ 0
0 −z1/2C1 0 C1 0
0 0 1 0 −1



×




V11

V41

V22

V42

U52




(13)

The same transfer function as in relation (12) is obtained by computation of Qo2 /Qi1 from this
matrix.
This representation is possible to implement directly into the C-matrix for SC circuit descrip-
tion. By this way idealized SI circuit can be analyzed in programs for SC circuit analysis
without symbolic formulation of results and without any limit calculation. Larger matrix is
the certain disadvantage of the method.

1 The transfer function does not include transconductances in this elementary example.

Direct description of SI cell can be applied in case of special program for idealized SI circuit
analysis. Direct matrix representation of SI cell from Fig. 5 for switching in phase φ1 and also
in phase φ2 has the following expressions in case of circuit switched in two phases.

V11 V12

Ii1 gm 0
Ii2 z−1/2gm 0 for φ1,

V11 V12

I11 0 z−1/2gm
I12 0 gm for φ2, (14)

where I12 = −Io2 for circuit switched in phase φ1 and I11 = −Io1 for circuit switched in phase
φ2.
Now the currents are used instead of charges – it is a case of modified node voltages method
applied for circuit switched in two phases. In our case the circuit contains only one non-
grounded node. It means the matrix has only 2 × 2 dimension. The memory effect is here
described by current source controlled by voltage in phase φ1 and phase φ2 with non zero
transfer (transconductance) from one phase to the other as can be seen from the above mentioned
matrix form.
Presented procedure leads to the simple and easy description of SI structures and their effec-
tive analysis in both symbolic and numerical form.

4. Basic SI-biquad structures

This part intends to discuss some aspects of the "digital prototype" approach in sampled-data
biquads design.
It is important to say, that many applications of SI technique in sampled-data filter design
published from the nineties are mostly based on a two-integrator structure in the case of bi-
quads, or operational simulation of LC-prototype – see e.g. Toumazou et al. (1993). But the
principle of SI-circuit operation is rather similar to the digital ones, so there arises possibility
to use a "digital prototype" for SI-filter design.
The first and second direct forms of the 2nd-order digital filter were chosen as the prototypes.
Firstly, the design using SI memory cells was considered; in this case the final circuit should
preserve the dominant features of the prototype. As a generalization of this approach the re-
placement of the memory cells in the basic structure by a simple BD integrator and differentia-
tor was investigated. The structures obtained were compared in according to their sensitivity
properties, an influence of SI building blocks losses and circuit element values spread. The
results are demonstrated on the examples of the typical 2nd-order biquad realizations.
As mentioned, the selected prototypes are known as the first and the second direct-form digi-
tal filter structures, characterized by common transfer function (15) – see e.g. Antoniou (1979),
Mitra (2005).

H(z) =
b0 + b1 z−1 + b2 z−2

1 + a1 z−1 + a2 z−2 (15)

After redrawing, following the SI technique, the block diagrams shown in Figs. 8 and 9 were
obtained. Here the symbol CM denotes current copier (multiple-output current mirror), FB
means SI building block, for the first time the SI memory cell. The transfer function coefficients
are set by current copier gains ai, bi, as evident from Fig. 8 and Fig. 9.
With respect to the practical realization aspects, the direct-form 2 structure seems to be more
suitable because of simpler input and output current copiers. Multiple outputs of the SI-
building blocks do not mean design complications, as is shown in Fig. 2 – see Section 2.
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suitable because of simpler input and output current copiers. Multiple outputs of the SI-
building blocks do not mean design complications, as is shown in Fig. 2 – see Section 2.
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Fig. 8. Case I. SI circuit Fig. 9. Case II. SI circuit

To obtain a more complex overview about the circuits behavior, the following versions were
considered:

1. The SI-FBs are realized by memory cells in compliance with the digital prototype. These
are simple in the case of direct form 1, multiple-output under Fig. 2 in the case of direct
form 2. The weighted outputs are set using changed W/L output transistor ratios.

2. Memory cells are replaced by non-inverting BD and FD integrators.

3. SI-FBs are realized by BD differentiators under Fig. 4, described by the transfer function
H(z) = α (1 − z−1).

The following evaluative criteria were used for comparing all the considered structures:

• Sensitivity properties: With respect to the discrete-time character of SI circuits, the "equiv-
alent sensitivity" approach has been applied. A more detailed explanation of this ap-
proach has been published in Ref. Tichá (2006), and it is shortly indicated in Section 5.

• Losses influence: The important imperfections of SI circuits are caused by parasitic out-
put conductances of SI cells. In the following, these parasitics will be characterized by
output conductance go or by ratio xg =

gm
go

, where gm represents transistor transcon-
ductance.

• Transistor parameters spread: With respect to the technological limitations, the limits of
spread α = W/L of transistors are crucial. In our considerations the maximum available
spread is expected to be in the interval αmax/αmin < 50. In general, the given limit
influences the maximum ratio of sampling frequency fc to ω0eq.

The necessary symbolic analysis were made using MAPLE libraries PraSCan and PraCAn,
developed by Bičák & Hospodka (2006), Bičák et al. (1999) for symbolic and numerical analysis
of sampled-data circuits.

4.1 Results obtained

Sensitivity evaluation:
At first, let us consider the "original SI networks" under Figs. 8 and 9. The transfer function
of both structures corresponds directly to the Eq. (15), and the sensitivity properties can be
expressed using procedure described in Sec. 5 in the form (25) and (26), as the functions of pa-
rameters a1, a2. More suitable for practical design are the sensitivity functions of "continuous-
time" H(s) parameters ω0, Q and sampling period T. In this case the sensitivities can be
expressed by (29) and (30).
Evaluated sensitivity graphs of ω0eq- and Qeq-sensitivities on fc/ f0 ratio in Fig. 10 and Fig. 11
show unsuitable values for higher xc. This fact limits the use of such biquads to lower values
of xc.

Fig. 10. Sω0eq
ai = f (xc)

Fig. 11. SQeq
ai = f (xc)

The modified structures containing integrators or differentiators show better sensitivity prop-
erties as is evident from Fig. 12 and Fig. 13. The graphs pertain to the non-inverting BD inte-
grator version of Case I structure; similar behavior was found in versions based on FD inte-
grators, mixed BD-FD integrator combinations or differentiator based circuits.
This behavior can be easily explained, because the introduced integrator- and differentiator-
type structures are in fact the special cases of SFG or state-variable based biquad design.
Note that the ω0eq and Qeq sensitivities to the gain constants αi, i=1,2 of integrator- and

differentiator-type building blocks are typically 0.5 - 1 and decrease to the limit value SQeq
ai =

0.5 for xc � 1. Similar values were obtained in the case of ω0eq sensitivities. Table 1 illus-
trates the sensitivity properties of the chosen Case I structure versions for starting parameters
f0 = 2 kHz, fc = 48 kHz, Q = 1/

√
2.

Here symbol "M" denotes the "original" structure containing SI memory cells, "BD int" denotes
the version using BD integrators and similarly "FD int" denotes the version using FD integra-
tors. Case "FD+BD int" corresponds to the arrangement where FB1 block is implemented as
the FD integrator and FB2 block as the BD integrator. The order of FBs is important, a changed
arrangement results in increased sensitivities. The last row contains sensitivity values for a BD
differentiator based circuit.
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Fig. 8. Case I. SI circuit Fig. 9. Case II. SI circuit

To obtain a more complex overview about the circuits behavior, the following versions were
considered:

1. The SI-FBs are realized by memory cells in compliance with the digital prototype. These
are simple in the case of direct form 1, multiple-output under Fig. 2 in the case of direct
form 2. The weighted outputs are set using changed W/L output transistor ratios.

2. Memory cells are replaced by non-inverting BD and FD integrators.

3. SI-FBs are realized by BD differentiators under Fig. 4, described by the transfer function
H(z) = α (1 − z−1).

The following evaluative criteria were used for comparing all the considered structures:

• Sensitivity properties: With respect to the discrete-time character of SI circuits, the "equiv-
alent sensitivity" approach has been applied. A more detailed explanation of this ap-
proach has been published in Ref. Tichá (2006), and it is shortly indicated in Section 5.

• Losses influence: The important imperfections of SI circuits are caused by parasitic out-
put conductances of SI cells. In the following, these parasitics will be characterized by
output conductance go or by ratio xg =

gm
go

, where gm represents transistor transcon-
ductance.

• Transistor parameters spread: With respect to the technological limitations, the limits of
spread α = W/L of transistors are crucial. In our considerations the maximum available
spread is expected to be in the interval αmax/αmin < 50. In general, the given limit
influences the maximum ratio of sampling frequency fc to ω0eq.

The necessary symbolic analysis were made using MAPLE libraries PraSCan and PraCAn,
developed by Bičák & Hospodka (2006), Bičák et al. (1999) for symbolic and numerical analysis
of sampled-data circuits.

4.1 Results obtained

Sensitivity evaluation:
At first, let us consider the "original SI networks" under Figs. 8 and 9. The transfer function
of both structures corresponds directly to the Eq. (15), and the sensitivity properties can be
expressed using procedure described in Sec. 5 in the form (25) and (26), as the functions of pa-
rameters a1, a2. More suitable for practical design are the sensitivity functions of "continuous-
time" H(s) parameters ω0, Q and sampling period T. In this case the sensitivities can be
expressed by (29) and (30).
Evaluated sensitivity graphs of ω0eq- and Qeq-sensitivities on fc/ f0 ratio in Fig. 10 and Fig. 11
show unsuitable values for higher xc. This fact limits the use of such biquads to lower values
of xc.

Fig. 10. Sω0eq
ai = f (xc)

Fig. 11. SQeq
ai = f (xc)

The modified structures containing integrators or differentiators show better sensitivity prop-
erties as is evident from Fig. 12 and Fig. 13. The graphs pertain to the non-inverting BD inte-
grator version of Case I structure; similar behavior was found in versions based on FD inte-
grators, mixed BD-FD integrator combinations or differentiator based circuits.
This behavior can be easily explained, because the introduced integrator- and differentiator-
type structures are in fact the special cases of SFG or state-variable based biquad design.
Note that the ω0eq and Qeq sensitivities to the gain constants αi, i=1,2 of integrator- and

differentiator-type building blocks are typically 0.5 - 1 and decrease to the limit value SQeq
ai =

0.5 for xc � 1. Similar values were obtained in the case of ω0eq sensitivities. Table 1 illus-
trates the sensitivity properties of the chosen Case I structure versions for starting parameters
f0 = 2 kHz, fc = 48 kHz, Q = 1/

√
2.

Here symbol "M" denotes the "original" structure containing SI memory cells, "BD int" denotes
the version using BD integrators and similarly "FD int" denotes the version using FD integra-
tors. Case "FD+BD int" corresponds to the arrangement where FB1 block is implemented as
the FD integrator and FB2 block as the BD integrator. The order of FBs is important, a changed
arrangement results in increased sensitivities. The last row contains sensitivity values for a BD
differentiator based circuit.
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Fig. 12. Sω0eq
ai = f (xc) Fig. 13. SQeq

ai = f (xc)

Type Sω0eq
a1 Sω0eq

a2 SQeq
a1 SQeq

a2 SQeq
α1 SQeq

α2

M -14.6 5.97 -14.1 8.42 - -

BD int 0.109 0.491 -1.29 0.693 -0.601 0.693

FD int -0.075 0.491 -0.739 0.323 -0.416 0.323

FD+BD int -0.092 0.508 -0.907 0.491 -0.416 0.491

BD diff -0.075 -0.416 -0.739 0.416 -0.323 0.416

Table 1. Sensitivity properties

Losses influence:
As mentioned, the finite output conductances of the basic SI cells and current copiers (current
mirrors) are crucial in SI circuit design together with the number of blocks in the signal path.
With regard to this, it is necessary to distinguish between the Case I and Case II structures.
Some simulations showed slightly better behavior of the Case II arrangement. Simultane-
ously it is important to take into account the finite "on" resistance of switches. Especially
differentiator-based circuits are sensitive to switch imperfections.
Table 2 documents typical frequency response errors for the realizations introduced in Table 1.
Here the typical ratios xg = gm/go = 200 and ron switches equal to the input resistance of
current building blocks were considered.

Transistor parameters spread
This is markedly determined by the designed structure type and fc/ f0 ratio. For illustration,
let us assume the LP biquad designed under the same conditions documented in Table 1 and
Table 2.
As is evident from Table 3, the maximum values spread shows the memory cell based version,
the max-to-min ratio equals 114.3. The differentiator and integrator based versions are less
demanding, the max-to-min ratio was evaluated from 48.5 to 69.9.

Type ε εmax ε(0) ε(ω0)

M-Case I 0.0346 0.426 0.426 0.176

M-Case II 0.0274 0.335 0.335 0.142

BD int Case I 0.0136 0.123 0.106 0.0853

BD int Case II 0.0147 0.139 0.126 0.0905

FD int Case I 0.0149 0.127 0.109 0.0915

BD diff Case I 0.0124 0.116 0.109 0.0458

Table 2. Frequency response errors

Note that the last versions have two free parameters α1, α2 which can be exploited for design
optimization; unfortunately changes to these parameters do not allow any minimization of
values spread.

Type b0 b1 b2 a1 a2

M 0.0143 0.285 0.0143 -1.635 0.692

BD int 0.0143 0.057
α1

0.057
α1 α2

0.365
α1

0.057
α1 α2

FD int 0.0206 0.0824
α1

0.0824
α1 α2

− 0.3626
α1

0.0824
α1 α2

FD+BD int 0.0206 0 0.0824
α1 α2

− 0.445
α1

0.0824
α1 α2

BD diff 1 − 1
α1

− 0.25
α1 α2

4.402
α

12.139
α1 α2

Table 3. design parameters for f0 = 2 kHz

Type b0 b1 b2 a1 a2

M 0.00391 0.00781 0.00391 -1.816 0.831

BD int 0.00391 0.0156
α1

0.0156
α1 α2

0.184
α1

0.0156
α1 α2

FD int 0.0047 0.0188
α1

0.0188
α1 α2

− 0.184
α1

0.0156
α1 α2

FD+BD int 0.0047 0 0.0188
α1 α2

− 0.203
α1

0.0188
α1 α2

BD diff 1 − 1
α1

− 0.25
α1 α2

9.804
α

53.21
α1 α2

Table 4. design parameters for f0 = 1 kHz

The influence of the fc/ f0 ratio to the transistor parameters spread is demonstrated in Table 4,
showing parameter changes for the lowered f0 = 1 kHz from the previous design.
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Fig. 12. Sω0eq
ai = f (xc) Fig. 13. SQeq

ai = f (xc)

Type Sω0eq
a1 Sω0eq

a2 SQeq
a1 SQeq

a2 SQeq
α1 SQeq

α2

M -14.6 5.97 -14.1 8.42 - -

BD int 0.109 0.491 -1.29 0.693 -0.601 0.693

FD int -0.075 0.491 -0.739 0.323 -0.416 0.323

FD+BD int -0.092 0.508 -0.907 0.491 -0.416 0.491

BD diff -0.075 -0.416 -0.739 0.416 -0.323 0.416

Table 1. Sensitivity properties

Losses influence:
As mentioned, the finite output conductances of the basic SI cells and current copiers (current
mirrors) are crucial in SI circuit design together with the number of blocks in the signal path.
With regard to this, it is necessary to distinguish between the Case I and Case II structures.
Some simulations showed slightly better behavior of the Case II arrangement. Simultane-
ously it is important to take into account the finite "on" resistance of switches. Especially
differentiator-based circuits are sensitive to switch imperfections.
Table 2 documents typical frequency response errors for the realizations introduced in Table 1.
Here the typical ratios xg = gm/go = 200 and ron switches equal to the input resistance of
current building blocks were considered.

Transistor parameters spread
This is markedly determined by the designed structure type and fc/ f0 ratio. For illustration,
let us assume the LP biquad designed under the same conditions documented in Table 1 and
Table 2.
As is evident from Table 3, the maximum values spread shows the memory cell based version,
the max-to-min ratio equals 114.3. The differentiator and integrator based versions are less
demanding, the max-to-min ratio was evaluated from 48.5 to 69.9.

Type ε εmax ε(0) ε(ω0)

M-Case I 0.0346 0.426 0.426 0.176

M-Case II 0.0274 0.335 0.335 0.142

BD int Case I 0.0136 0.123 0.106 0.0853

BD int Case II 0.0147 0.139 0.126 0.0905

FD int Case I 0.0149 0.127 0.109 0.0915

BD diff Case I 0.0124 0.116 0.109 0.0458

Table 2. Frequency response errors

Note that the last versions have two free parameters α1, α2 which can be exploited for design
optimization; unfortunately changes to these parameters do not allow any minimization of
values spread.

Type b0 b1 b2 a1 a2

M 0.0143 0.285 0.0143 -1.635 0.692

BD int 0.0143 0.057
α1

0.057
α1 α2

0.365
α1

0.057
α1 α2

FD int 0.0206 0.0824
α1

0.0824
α1 α2

− 0.3626
α1

0.0824
α1 α2

FD+BD int 0.0206 0 0.0824
α1 α2

− 0.445
α1

0.0824
α1 α2

BD diff 1 − 1
α1

− 0.25
α1 α2

4.402
α

12.139
α1 α2

Table 3. design parameters for f0 = 2 kHz

Type b0 b1 b2 a1 a2

M 0.00391 0.00781 0.00391 -1.816 0.831

BD int 0.00391 0.0156
α1

0.0156
α1 α2

0.184
α1

0.0156
α1 α2

FD int 0.0047 0.0188
α1

0.0188
α1 α2

− 0.184
α1

0.0156
α1 α2

FD+BD int 0.0047 0 0.0188
α1 α2

− 0.203
α1

0.0188
α1 α2

BD diff 1 − 1
α1

− 0.25
α1 α2

9.804
α

53.21
α1 α2

Table 4. design parameters for f0 = 1 kHz

The influence of the fc/ f0 ratio to the transistor parameters spread is demonstrated in Table 4,
showing parameter changes for the lowered f0 = 1 kHz from the previous design.
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In this case the max-to-min ratio increases for the memory cell version to 464.4. The best result
is obtained for the differentiator based circuit, where the max-to-min ratio equals 212.8. It is
evident that such designs are hardly realizable and strongly require lower sampling frequency.

5. Sensitivity approach in discrete-time filters design

The sensitivity approach is a worthwile tool for the optimized design of analog continuous-
time and sampled-data filters. Particularly the design of biquadratic sections for cascade re-
alization of higher-order filters is significantly influenced by the sensitivity properties of the
considered circuits. Mainly the sensitivities of ω0- and Q- parameters to the filter elements
changes serve as the effective criterion for suitable circuit structure selection and design opti-
mization, because ω0 and Q uniquely determine the frequency response shape.
The ”main“ sensitivities of the biquadratic transfer function H(s) (16) are defined by formulas
(17), where xi means active and passive circuit elements. The ω0 and Q parameters are defined
by (18) as the functions of the real and imaginary parts σ1, ω1 of the complex-conjugate poles
of the 2nd-order biquadratic transfer function (16).

H(s) =
k2 s2 + k1 s + k0

s2 + ω0
Q s + ω2

0
(16)

Sω0
xi =

∂ω0
∂xi

xi
ω0

; SQ
xi =

∂Q
∂xi

xi
Q

; (17)

ω0 =
√

σ2
1 + ω2

1 ; Q =
ω0
2 σ1

. (18)

Sensitivity concept is less usual in the field of the digital filters, because there is not a direct
equivalent of the ω0 and Q parameters in the s-plane to the similar parameters in z-plane.
Nevertheless the relevance of sensitivity usage in digital filter design can be more obvious, if
we are aware of the correspondence between rounding errors in "digital area" and tolerances
of circuit element values in the "continuous-time" area. Here the sensitivities represent the
measure for possible rounding without loss of the accuracy of the filter frequency response.
Simultaneously, sensitivities can help to solve problems with the optimum choice of the real-
ization structure with respect to the ”non-standard” design conditions, e.g. in design of the
digital filters and equalizers for audio signal processing.
To apply sensitivity approach in digital filter design effectively, it is necessary to formularize
equivalent sensitivity parameters, transforming z-plane parameters into s-plane and evaluate
them like functions of H(z). Such a procedure, described in Tichá (2006), will be presented in
the following.

5.1 Equivalent sensitivity evaluation
Let us assume "standard" 2nd-order transfer function H(z) in the form (19). The equivalent
parameters ω0 and Q can be obtained using an appropriate transformation of H(z) into s-
plane and comparison to the ordinary form of H(s) under (16)

H(z) =
b0 + b1 z−1 + b2 z−2

1 − a1 z−1 − a2 z−2 ; (19)

To obtain the generally valid relationship, the z − s transformation should be symbolic. Using
inverse bilinear transformation (20) of H(z)

z =
2 + s T
2 − s T

(20)

we obtain equivalent Heq(s) in the form (21) and after formal rearrangement the final form
(22) comparable to (16).

Heq(s) =
T2 (b0 − b1 + b2) s2 + 4 T (b0 − b2) s + 4 (b0 + b1 + b2)

T2 (1 + a1 − a2) s2 + 4 T (a2 + 1) s + 4 (1 − a1 − a2)
; (21)

Heq(s) =
(b0−b1+b2)
1+a1−a2

s2 + 4 (b0−b2)
T(1+a1−a2)

s + 4 b0+b1+b2
T2(1+a1−a2)

s2 + 4 (a2+1)
T(1+a1−a2)

s + 4 1−a1−a2
T2(1+a1−a2)

. (22)

A comparison of (22) to (16) gives

ω0eq =
2
T

√
1 − a1 − a2
1 + a1 − a2

; (23) Qeq =

√
(1 − a2)2 − a2

1

2 (1 + a2)
. (24)

Now it is possible to express the equivalent sensitivity of ω0eq and Qeq to the denominator
coefficients a1 and a2 using formula (17). The symbolic form of the evaluated sensitivities is
as follows

Sω0
a1 = − a1 (1 − a2)

(1 − a2)2 − a2
1

; SQ
a1 = − a1

2

(1 − a2)2 − a2
1

; (25)

Sω0
a2 =

a1 a2

(1 − a2)2 − a2
1

; SQ
a2 =

a2
[
a1

2 − 2 (1 − a2)
]

(1 + a2)
[
(1 − a2)2 − a2

1
] . (26)

In some cases it is suitable to express the equivalent sensitivities as the functions of ω0, Q and
T, or xc = fc/ω0. To extend the expressions (25) - (26), it is necessary to transform coefficients
a1, a2 into s-plane using backward bilinear transformation of H(z) denominator. Doing this,
the following expressions were gained:

a1 =
2 (4 − ω2

0 T2)Q
2 ω0 T + 4 Q + ω2

0 T2 Q
; (27)

a2 = −
−2 ω0 T + ω2

0 T2 Q + 4 Q
2 ω0 T + 4 Q + ω2

0 T2 Q
. (28)

Applying (27) and (28) in Eqs. (25) to (26) we obtain the modified sensitivity expressions (29)
– (30). The parameter xc is defined by Eq. (31).

Sω0
a1e = − (16 x4

c − 1)
16 x2

c
; SQ

a1e = − (4 x2
c − 1)2

16 x2
c

; (29)

Sω0
a2e =

x2
c

2
− xc

4 Q
+

1
16 xc Q

− 1
32 x2

c
; SQ

a2e = −1
4
+

x2
c

2
+

(1 + 4xc) (4Q2 − 1)
16 Q xc

+
1

32 x2
c

. (30)

xc =
1

T ω0
=

fc

ω0
(31)
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In this case the max-to-min ratio increases for the memory cell version to 464.4. The best result
is obtained for the differentiator based circuit, where the max-to-min ratio equals 212.8. It is
evident that such designs are hardly realizable and strongly require lower sampling frequency.

5. Sensitivity approach in discrete-time filters design

The sensitivity approach is a worthwile tool for the optimized design of analog continuous-
time and sampled-data filters. Particularly the design of biquadratic sections for cascade re-
alization of higher-order filters is significantly influenced by the sensitivity properties of the
considered circuits. Mainly the sensitivities of ω0- and Q- parameters to the filter elements
changes serve as the effective criterion for suitable circuit structure selection and design opti-
mization, because ω0 and Q uniquely determine the frequency response shape.
The ”main“ sensitivities of the biquadratic transfer function H(s) (16) are defined by formulas
(17), where xi means active and passive circuit elements. The ω0 and Q parameters are defined
by (18) as the functions of the real and imaginary parts σ1, ω1 of the complex-conjugate poles
of the 2nd-order biquadratic transfer function (16).

H(s) =
k2 s2 + k1 s + k0

s2 + ω0
Q s + ω2

0
(16)

Sω0
xi =

∂ω0
∂xi

xi
ω0

; SQ
xi =

∂Q
∂xi

xi
Q

; (17)

ω0 =
√

σ2
1 + ω2

1 ; Q =
ω0
2 σ1

. (18)

Sensitivity concept is less usual in the field of the digital filters, because there is not a direct
equivalent of the ω0 and Q parameters in the s-plane to the similar parameters in z-plane.
Nevertheless the relevance of sensitivity usage in digital filter design can be more obvious, if
we are aware of the correspondence between rounding errors in "digital area" and tolerances
of circuit element values in the "continuous-time" area. Here the sensitivities represent the
measure for possible rounding without loss of the accuracy of the filter frequency response.
Simultaneously, sensitivities can help to solve problems with the optimum choice of the real-
ization structure with respect to the ”non-standard” design conditions, e.g. in design of the
digital filters and equalizers for audio signal processing.
To apply sensitivity approach in digital filter design effectively, it is necessary to formularize
equivalent sensitivity parameters, transforming z-plane parameters into s-plane and evaluate
them like functions of H(z). Such a procedure, described in Tichá (2006), will be presented in
the following.

5.1 Equivalent sensitivity evaluation
Let us assume "standard" 2nd-order transfer function H(z) in the form (19). The equivalent
parameters ω0 and Q can be obtained using an appropriate transformation of H(z) into s-
plane and comparison to the ordinary form of H(s) under (16)

H(z) =
b0 + b1 z−1 + b2 z−2

1 − a1 z−1 − a2 z−2 ; (19)

To obtain the generally valid relationship, the z − s transformation should be symbolic. Using
inverse bilinear transformation (20) of H(z)

z =
2 + s T
2 − s T

(20)

we obtain equivalent Heq(s) in the form (21) and after formal rearrangement the final form
(22) comparable to (16).

Heq(s) =
T2 (b0 − b1 + b2) s2 + 4 T (b0 − b2) s + 4 (b0 + b1 + b2)

T2 (1 + a1 − a2) s2 + 4 T (a2 + 1) s + 4 (1 − a1 − a2)
; (21)

Heq(s) =
(b0−b1+b2)
1+a1−a2

s2 + 4 (b0−b2)
T(1+a1−a2)

s + 4 b0+b1+b2
T2(1+a1−a2)

s2 + 4 (a2+1)
T(1+a1−a2)

s + 4 1−a1−a2
T2(1+a1−a2)

. (22)

A comparison of (22) to (16) gives

ω0eq =
2
T

√
1 − a1 − a2
1 + a1 − a2

; (23) Qeq =

√
(1 − a2)2 − a2

1

2 (1 + a2)
. (24)

Now it is possible to express the equivalent sensitivity of ω0eq and Qeq to the denominator
coefficients a1 and a2 using formula (17). The symbolic form of the evaluated sensitivities is
as follows

Sω0
a1 = − a1 (1 − a2)

(1 − a2)2 − a2
1

; SQ
a1 = − a1

2

(1 − a2)2 − a2
1

; (25)

Sω0
a2 =

a1 a2

(1 − a2)2 − a2
1

; SQ
a2 =

a2
[
a1

2 − 2 (1 − a2)
]

(1 + a2)
[
(1 − a2)2 − a2

1
] . (26)

In some cases it is suitable to express the equivalent sensitivities as the functions of ω0, Q and
T, or xc = fc/ω0. To extend the expressions (25) - (26), it is necessary to transform coefficients
a1, a2 into s-plane using backward bilinear transformation of H(z) denominator. Doing this,
the following expressions were gained:

a1 =
2 (4 − ω2

0 T2)Q
2 ω0 T + 4 Q + ω2

0 T2 Q
; (27)

a2 = −
−2 ω0 T + ω2

0 T2 Q + 4 Q
2 ω0 T + 4 Q + ω2

0 T2 Q
. (28)

Applying (27) and (28) in Eqs. (25) to (26) we obtain the modified sensitivity expressions (29)
– (30). The parameter xc is defined by Eq. (31).

Sω0
a1e = − (16 x4

c − 1)
16 x2

c
; SQ

a1e = − (4 x2
c − 1)2

16 x2
c

; (29)

Sω0
a2e =

x2
c

2
− xc

4 Q
+

1
16 xc Q

− 1
32 x2

c
; SQ

a2e = −1
4
+

x2
c

2
+

(1 + 4xc) (4Q2 − 1)
16 Q xc

+
1

32 x2
c

. (30)

xc =
1

T ω0
=

fc

ω0
(31)
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The formulas obtained are valid directly for the 1st and the 2nd canonic direct form of the
digital filters – see Laipert et al. (2000), Antoniou (1979), Mitra (2005) and others. For the
other 2nd-order structures it is necessary to express the transfer function H(z) coefficients
ai, bi, i=0,1,2 (19) as the functions of the analyzed structure parameters. The practical use of
this will be explained in the following parts.

5.2 Sensitivity properties of the direct canonic forms of digital filters
As mentioned, the sensitivity properties to the parameters of the 1st and the 2nd direct form
of the digital 2nd-order filters are straightly specified by above presented formulas, because
the coefficients are determined by the multipliers and adders constants of the filter block di-
agram. The filter general sensitivity properties can be in this case characterized preferably
by modified equations (29) and (30) as the functions of equivalent Q-factor and the ratio xc

given by eq. (31). The following figures Fig. 14 and Fig. 15 show the sensitivity Sω0eq
a1,2 and SQeq

a1,2

as functions of Qeq.

Fig. 14. Sω0
a1,2 = f (Q) Fig. 15. SQ

a1,2 = f (Q)

As evident, Sω0eq
a1 together with SQeq

a1 do not depend on Q-factor value, in contrast to the Sω0
a2

sensitivities. Note that sensitivities values are higher in comparison to the similar analogue
realizations.
From the practical point-of-view the Figs. 16 and 17 are more important. Here the Sω0eq

a1,2 and

SQeq
a1,2 sensitivities are depicted in dependence of ratio xc, thus indirectly as the functions of ω0eq

and T. These sensitivities are significantly higher than the previous ones and rapidly increase
for xc ≥ 10. This bears to the known fact, that direct forms of digital filters are less appropriate
for such implementations, where the sampling frequency is relative high.

5.3 Digital filters derived from SFG graph
These filters are analogous to the continuous-time 2nd-order filters designed on two-integrator
feedback loop. A typical example of such a filter is shown in Fig. 18. Transfer function of
this filter given by Eq. (32) was evaluated using modified SYRUP library in the mathematical
program MAPLE – see Tichá & Martinek (2007).

Fig. 16. Sω0
a1,2 = f (x) Fig. 17. SQ

a1,2 = f (x)

A sensitivity evaluation was made according to the previous example. The results are as
follows:

H(z) =
a5 z2 + (a1 − a5 + a6) z − a6

(1 − a4) z2 − (2 + a2 − a4) z + 1
; (32)

ω0eq =
2
T

√
− a2

4 + a2 − 2 a4
; (33) Qeq =

√
a2 (2 a4 − a2 − 4)

2 a4
. (34)

The corresponding sensitivities of ω0eq and Qeq to the H(z) denominator coefficients ai have
the form (35) to (38), and the modified sensitivities the form (39) to (42). Note that parameter
xc is defined by Eq. (31)

Sω0
a2 =

2 − a4
4 + a2 − 2 a4

; (35) SQ
a2 =

2 + a2 − a4
4 + a2 − 2 a4

; (36)

Sω0
a4 =

a4
4 + a2 − 2 a4

; (37) SQ
a4 = − 4 + a2 − a4

4 + a2 − 2 a4
; (38)

Sω0
a2m =

1
2
+

1
8 x2

c
; (39) SQ

a2m =
1
2
− 1

8 x2
c

; (40)

Sω0
a4m = − 1

4 xc Q
; (41) SQ

a4m = −1 +
1

4 xc Q
. (42)

Similarly to the previous example the evaluated sensitivities can be presented as the functions
of Q and xc. The graphical representation of the functions Sω0

ai = f (Q) and SQ
ai = f (Q); i=2,3,4

for given xc = 5 is in Fig. 19. The graphs of functions Sω0
ai = f (xc) and SQ

ai = f (xc); i=2,4 for
Q = 2 are shown in Figs. 20.
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The formulas obtained are valid directly for the 1st and the 2nd canonic direct form of the
digital filters – see Laipert et al. (2000), Antoniou (1979), Mitra (2005) and others. For the
other 2nd-order structures it is necessary to express the transfer function H(z) coefficients
ai, bi, i=0,1,2 (19) as the functions of the analyzed structure parameters. The practical use of
this will be explained in the following parts.

5.2 Sensitivity properties of the direct canonic forms of digital filters
As mentioned, the sensitivity properties to the parameters of the 1st and the 2nd direct form
of the digital 2nd-order filters are straightly specified by above presented formulas, because
the coefficients are determined by the multipliers and adders constants of the filter block di-
agram. The filter general sensitivity properties can be in this case characterized preferably
by modified equations (29) and (30) as the functions of equivalent Q-factor and the ratio xc

given by eq. (31). The following figures Fig. 14 and Fig. 15 show the sensitivity Sω0eq
a1,2 and SQeq

a1,2

as functions of Qeq.

Fig. 14. Sω0
a1,2 = f (Q) Fig. 15. SQ

a1,2 = f (Q)

As evident, Sω0eq
a1 together with SQeq

a1 do not depend on Q-factor value, in contrast to the Sω0
a2

sensitivities. Note that sensitivities values are higher in comparison to the similar analogue
realizations.
From the practical point-of-view the Figs. 16 and 17 are more important. Here the Sω0eq

a1,2 and

SQeq
a1,2 sensitivities are depicted in dependence of ratio xc, thus indirectly as the functions of ω0eq

and T. These sensitivities are significantly higher than the previous ones and rapidly increase
for xc ≥ 10. This bears to the known fact, that direct forms of digital filters are less appropriate
for such implementations, where the sampling frequency is relative high.

5.3 Digital filters derived from SFG graph
These filters are analogous to the continuous-time 2nd-order filters designed on two-integrator
feedback loop. A typical example of such a filter is shown in Fig. 18. Transfer function of
this filter given by Eq. (32) was evaluated using modified SYRUP library in the mathematical
program MAPLE – see Tichá & Martinek (2007).

Fig. 16. Sω0
a1,2 = f (x) Fig. 17. SQ

a1,2 = f (x)

A sensitivity evaluation was made according to the previous example. The results are as
follows:

H(z) =
a5 z2 + (a1 − a5 + a6) z − a6

(1 − a4) z2 − (2 + a2 − a4) z + 1
; (32)

ω0eq =
2
T

√
− a2

4 + a2 − 2 a4
; (33) Qeq =

√
a2 (2 a4 − a2 − 4)

2 a4
. (34)

The corresponding sensitivities of ω0eq and Qeq to the H(z) denominator coefficients ai have
the form (35) to (38), and the modified sensitivities the form (39) to (42). Note that parameter
xc is defined by Eq. (31)

Sω0
a2 =

2 − a4
4 + a2 − 2 a4

; (35) SQ
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2 + a2 − a4
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; (36)
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+
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Similarly to the previous example the evaluated sensitivities can be presented as the functions
of Q and xc. The graphical representation of the functions Sω0

ai = f (Q) and SQ
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for given xc = 5 is in Fig. 19. The graphs of functions Sω0
ai = f (xc) and SQ

ai = f (xc); i=2,4 for
Q = 2 are shown in Figs. 20.
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Fig. 18. Digital 2nd-order integrator-based filter

(a) Sω0
a2,4 = f (Q) (b) SQ

a2,4 = f (Q)

Fig. 19. Sensitivities Sω0
a2,4 = f (Q) and SQ

a2,4 = f (Q) for xc = 5.

In comparison to the direct-form structure all the sensitivities are considerably smaller and do
not exceed unit value. It is important to emphasize the sensitivity independence from ratio xc.
It means that such a filter can be implemented successfully under non-standard conditions,
where the limited word length or high ratio of ω0 and fc lead to the significant frequency
response inaccuracy or filter instability.

(a) Sω0
a2,4 = f (x) (b) SQ

a2,4 = f (x)

Fig. 20. Sensitivities Sω0
a2,4 = f(xc) and SQ

a2,4 = f(xc) for Q = 2.

6. A tool for symbolic analysis of digital filters

Symbolic and semi-symbolic analysis is considered to be an efficient tool for design and op-
timization of electrical and electronic circuits, not only analogue, but also digital. During
the last period many specialized programs were developed for this purpose, but the most of
them do not allow the direct post-processing of the results obtained. The more prospective
approach is based on the use of mathematical programs oriented to the symbolic mathemat-
ics. Here the MAPLE program, especially developed for symbolic computations, seems to be
the most suitable for this purpose. The symbolic analysis of analogue circuit is supported in
MAPLE program by the SYRUP library Riel (2007). The SYRUP represents simple, but very ef-
ficient universal tool for circuit analysis, similar to the SPICE program in the circuit numerical
analysis area.
As shown in the following, the SYRUP library can be easily adapted for the digital filters sym-
bolic analysis as well. This assertion results from the fact, that circuit equations describing the
digital filter block diagrams are very similar to the ones describing common analogue circuits.
It leads to the direct use of the modified node-voltage equations method after completing the
basic elements library. In contrast to the commonly used programs for circuit analysis, the
input language of the SYRUP library is very flexible and allows to create models of the digital
filter building block by a simple way.

6.1 The MAPLE-SYRUP library extension
To analyze digital filter block diagrams using SYRUP, it is necessary to complete the basic set
of circuit elements models. The most important "digital" building blocks are the delay element
D and general multiple-input summing element SUM. The first of them is presented in Fig. 21
and the second in Fig. 22. Note that A in the summing element equation means summer
gain; i.e. the multiplication operation can be included into this element. Nevertheless, the
multiplication can be realized independently as well by some of "standard" library elements.
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Fig. 18. Digital 2nd-order integrator-based filter

(a) Sω0
a2,4 = f (Q) (b) SQ

a2,4 = f (Q)

Fig. 19. Sensitivities Sω0
a2,4 = f (Q) and SQ

a2,4 = f (Q) for xc = 5.

In comparison to the direct-form structure all the sensitivities are considerably smaller and do
not exceed unit value. It is important to emphasize the sensitivity independence from ratio xc.
It means that such a filter can be implemented successfully under non-standard conditions,
where the limited word length or high ratio of ω0 and fc lead to the significant frequency
response inaccuracy or filter instability.

(a) Sω0
a2,4 = f (x) (b) SQ

a2,4 = f (x)

Fig. 20. Sensitivities Sω0
a2,4 = f(xc) and SQ

a2,4 = f(xc) for Q = 2.

6. A tool for symbolic analysis of digital filters

Symbolic and semi-symbolic analysis is considered to be an efficient tool for design and op-
timization of electrical and electronic circuits, not only analogue, but also digital. During
the last period many specialized programs were developed for this purpose, but the most of
them do not allow the direct post-processing of the results obtained. The more prospective
approach is based on the use of mathematical programs oriented to the symbolic mathemat-
ics. Here the MAPLE program, especially developed for symbolic computations, seems to be
the most suitable for this purpose. The symbolic analysis of analogue circuit is supported in
MAPLE program by the SYRUP library Riel (2007). The SYRUP represents simple, but very ef-
ficient universal tool for circuit analysis, similar to the SPICE program in the circuit numerical
analysis area.
As shown in the following, the SYRUP library can be easily adapted for the digital filters sym-
bolic analysis as well. This assertion results from the fact, that circuit equations describing the
digital filter block diagrams are very similar to the ones describing common analogue circuits.
It leads to the direct use of the modified node-voltage equations method after completing the
basic elements library. In contrast to the commonly used programs for circuit analysis, the
input language of the SYRUP library is very flexible and allows to create models of the digital
filter building block by a simple way.

6.1 The MAPLE-SYRUP library extension
To analyze digital filter block diagrams using SYRUP, it is necessary to complete the basic set
of circuit elements models. The most important "digital" building blocks are the delay element
D and general multiple-input summing element SUM. The first of them is presented in Fig. 21
and the second in Fig. 22. Note that A in the summing element equation means summer
gain; i.e. the multiplication operation can be included into this element. Nevertheless, the
multiplication can be realized independently as well by some of "standard" library elements.
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Yout(z) = [Xa(z) + Xb(z)] z−1

> .subckt MEM out a b
> Vout out 0
(v[a]+v[b])/z

> .ends

Fig. 21. The Delay element model

Yout(z) = A [Xa(z) + Xb(z) + Xc(z)]

> .subckt SUM out a b c
> Vout out 0
A*(v[a]+v[b]+v[c])

> .ends

Fig. 22. The general summer model

All the mentioned blocks can be represented by sub-circuits, based on "voltage" description,
as demonstrated by listings in SYRUP language – see Fig. 21 and 22. It is important to say
that the multiple-input delay element model can be easily created, and, in this modified form
it makes possible significant simplification of the block diagram and its description in the
SYRUP input file.

6.2 Post-processing of the results
The MAPLE program environment offers an efficient processing of the symbolic terms includ-
ing simplification of algebraic expressions, solution of the sets of symbolic or semi-symbolic
equations, symbolic differentiation or integration and so forth. This gives facilities for effec-
tive post-processing of the symbolic analysis results, especially for the purpose of the analyzed
networks optimized design. The following topics can be typically solved:

• Derivation of the design formulas.
The "standard" procedure compares the given numerical transfer function with the sym-
bolic one of the filter designed. It leads to the system of equations for unknown parame-
ters of building blocks (usually multipliers). In the case of the direct form structures the
design procedure is the simplest with respect to the canonical character of the solved
filter. The general solution of design formulas for the uncanonical structures is not so
simple and usually requires any auxiliary tool.
Design of the IIR filters usually starts from the prewarped continuous-time transfer
function H(s), obtained using approximation procedure. Here the necessary H(s) →
H(z) transformation can be integrated with the designed filter parameters computa-
tion, similarly to the design of analogue sampled-data filters. Especially for the 2nd-
order partial transfer functions it is easy to derive the direct formulas based on H(s)
parameters ω0 and Q. The use for cascade realization of the higher-order digital filters
is evident.

• Sensitivity properties computations.
The relevance of sensitivity computation in digital filter design can be more obvious,
if we are aware of the correspondence between rounding errors in "digital area" and

tolerances of element values in the "continuous-time area". Therein the sensitivities
represent the measure for possible rounding without loss of the accuracy of the filter
frequency response.

• Optimization with respect to the building blocks parameter values spread, dynamics and sensi-
tivity properties.
The dynamics optimization is important with respect to the data-overflow. The op-
timization is based on the partial transfer maxims comparison and their equalization
with respect to the "main" transfer maximum. The optimization procedure can be sup-
ported by symbolic partial transfers computation and the critical parameter finding. As
proved, symbolic analysis is the excellent tool for complex optimization solving all the
mentioned criteria.

6.3 Examples
The usage of the extended library is demonstrated on the analysis of some typical examples of
digital filters, represented by block diagrams. Note that the obtained transfer functions H(z)
can be easily post-processed in MAPLE environment and used for the optimized design of the
simulated systems.
The simplest example of symbolic analysis seems to be the 2nd-order digital filter direct form
II. structure. The block diagram is shown in Fig. 23 and the SYRUP data file in the Fig. 24.

HK2 :=
b0 z2 + b1 z + b2

z2 + a1 z + a2

Fig. 23. The 2nd-order direct form II.

> obvod5:= "

> Vn 1 0

> XS1 3 1 7 0 SUM(A=1)

> XS2 7 6 11 0 SUM(A=1)

> XM1 5 3 0 MEM

> XM2 10 5 0 MEM

> Ea1 6 0 5 0 -a1

> Ea2 11 0 10 0 -a2

> Eb0 4 0 3 0 b0

> Eb1 8 0 5 0 b1

> XS3 9 12 8 0 SUM(A=1)

> Eb2 12 0 10 0 b2

> XS4 2 4 9 0 SUM(A=1)

> .subckt SUM out a b c
> Vd out 0
A*(v[a]+v[b]+v[c])

> .ends

> .subckt MEM out a b

> Vg out 0 (v[a]+v[b])/z

> .ends

> .end ":

Fig. 24. Data-file SYRUP
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Yout(z) = [Xa(z) + Xb(z)] z−1

> .subckt MEM out a b
> Vout out 0
(v[a]+v[b])/z

> .ends

Fig. 21. The Delay element model

Yout(z) = A [Xa(z) + Xb(z) + Xc(z)]

> .subckt SUM out a b c
> Vout out 0
A*(v[a]+v[b]+v[c])

> .ends

Fig. 22. The general summer model

All the mentioned blocks can be represented by sub-circuits, based on "voltage" description,
as demonstrated by listings in SYRUP language – see Fig. 21 and 22. It is important to say
that the multiple-input delay element model can be easily created, and, in this modified form
it makes possible significant simplification of the block diagram and its description in the
SYRUP input file.

6.2 Post-processing of the results
The MAPLE program environment offers an efficient processing of the symbolic terms includ-
ing simplification of algebraic expressions, solution of the sets of symbolic or semi-symbolic
equations, symbolic differentiation or integration and so forth. This gives facilities for effec-
tive post-processing of the symbolic analysis results, especially for the purpose of the analyzed
networks optimized design. The following topics can be typically solved:

• Derivation of the design formulas.
The "standard" procedure compares the given numerical transfer function with the sym-
bolic one of the filter designed. It leads to the system of equations for unknown parame-
ters of building blocks (usually multipliers). In the case of the direct form structures the
design procedure is the simplest with respect to the canonical character of the solved
filter. The general solution of design formulas for the uncanonical structures is not so
simple and usually requires any auxiliary tool.
Design of the IIR filters usually starts from the prewarped continuous-time transfer
function H(s), obtained using approximation procedure. Here the necessary H(s) →
H(z) transformation can be integrated with the designed filter parameters computa-
tion, similarly to the design of analogue sampled-data filters. Especially for the 2nd-
order partial transfer functions it is easy to derive the direct formulas based on H(s)
parameters ω0 and Q. The use for cascade realization of the higher-order digital filters
is evident.

• Sensitivity properties computations.
The relevance of sensitivity computation in digital filter design can be more obvious,
if we are aware of the correspondence between rounding errors in "digital area" and

tolerances of element values in the "continuous-time area". Therein the sensitivities
represent the measure for possible rounding without loss of the accuracy of the filter
frequency response.

• Optimization with respect to the building blocks parameter values spread, dynamics and sensi-
tivity properties.
The dynamics optimization is important with respect to the data-overflow. The op-
timization is based on the partial transfer maxims comparison and their equalization
with respect to the "main" transfer maximum. The optimization procedure can be sup-
ported by symbolic partial transfers computation and the critical parameter finding. As
proved, symbolic analysis is the excellent tool for complex optimization solving all the
mentioned criteria.

6.3 Examples
The usage of the extended library is demonstrated on the analysis of some typical examples of
digital filters, represented by block diagrams. Note that the obtained transfer functions H(z)
can be easily post-processed in MAPLE environment and used for the optimized design of the
simulated systems.
The simplest example of symbolic analysis seems to be the 2nd-order digital filter direct form
II. structure. The block diagram is shown in Fig. 23 and the SYRUP data file in the Fig. 24.

HK2 :=
b0 z2 + b1 z + b2

z2 + a1 z + a2

Fig. 23. The 2nd-order direct form II.

> obvod5:= "

> Vn 1 0

> XS1 3 1 7 0 SUM(A=1)

> XS2 7 6 11 0 SUM(A=1)

> XM1 5 3 0 MEM

> XM2 10 5 0 MEM

> Ea1 6 0 5 0 -a1

> Ea2 11 0 10 0 -a2

> Eb0 4 0 3 0 b0

> Eb1 8 0 5 0 b1

> XS3 9 12 8 0 SUM(A=1)

> Eb2 12 0 10 0 b2

> XS4 2 4 9 0 SUM(A=1)

> .subckt SUM out a b c
> Vd out 0
A*(v[a]+v[b]+v[c])

> .ends

> .subckt MEM out a b

> Vg out 0 (v[a]+v[b])/z

> .ends

> .end ":

Fig. 24. Data-file SYRUP
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The presented structure does not require any special procedure for design formulas. On the
other hand, it could be interesting to analyze the sensitivity properties.
The obtained expressions are suitable for the estimation of the "starting continuous-time pa-
rameters" influence to the digital filter parameters changes. As an example, the following
graph in Fig. 25 illustrates the SQ

a1,a2 sensitivity dependence on the Q-factor, when the ratio
xc =

fc
ω0

is set to xc = 5. The graph in Fig. 26 presents the SQ
a1,a2 sensitivities changes for

fixed Q = 2 and variable xc. This graph simultaneously explains the realization problems of
direct-form structures in the case of relatively high sampling frequencies fc. Similar results
were gained in the case of Sω0

a1,a2 sensitivities.

Fig. 25. SQ
a1,2 = f (Q) Fig. 26. SQ

a1,2 = f (x)

Note that the formulas obtained are valid directly for the first and the second canonic direct
form of the digital filters – see Mitra (2005), Laipert et al. (2000), Antoniou (1979) and oth-
ers. For the other 2nd-order structures it is necessary to express the transfer function H(z)
coefficients a1 a2 as the functions of the analyzed network parameters.

The second example presents the 2nd-order allpass filter from Mitra (2005), based on lattice struc-
ture. The block diagram is showed in Fig. 27 and the computed symbolic transfer function in
Fig. 28.
The following computations show better sensitivities of the analyzed filter in comparison to
the direct-form structure; the symbolic expressions for the SQ

k1,k2
and Sω0

k1,k2
sensitivities were

computed in the form

Sω0
k1

= − k1

k1
2 − 1

; SQ
k1

=
k1

2

k1
2 − 1

; (43)

Sω0
k2

= 0 ; SQ
k2

= − 2 k2

k2
2 − 1

. (44)

The numerical values for ω0 = 2π ∗ 1000, Q = 2 and x = 5 are SQ
k1

= −24.50245745, SQ
k2

=

10.07523914 and Sω0
k1

= −24.99745744.

Fig. 27. The 2nd-order all-pass.

> A9:= syrup(obvod9,ac):

> assign(A9):
> H9:= collect(v[11]/v[1],
> z,factor);

H9 :=
k2 z2 + k1 (k2 + 1) z + 1
z2 + k1 (k2 + 1) z + k2

Fig. 28. The all-pass simulation result.

The third example introduces state-space structure from Mitra (2005) whose block diagram is in
Fig. 29. This structure contains 9 unknown parameters, which represents 4 freedom degrees
in design conditions. Symbolic transfer function is expressed by Eqs.(45)–(47)

H14 =
NH14
DH14

(45)

where

NH14 = d z2 + (c1 b1 + c2 b2 − d (a22 + a11)) z + d ∆ + (−c1 a22 + c2 a21) b1 + (c1 a12 − c2 a11) b2
(46)

DH14 = z2 − (a22 + a11) z + ∆ ; ∆ = a11 a22 − a12 a21 . (47)

The design conditions can be solved directly in the z-plane, or, after transformation to the
s-plane. In this case, the transformed denominator receives the form (48)

DH14s = s2 +
4 (1 − ∆) s

T (1 + a11 + a22 + ∆)
+

4 (1 − a22 + ∆ − a11)

T2 (1 + a11 + a22 + ∆)
(48)

A comparison of Eq. (48) to the denominator of the standard form of H(s) (16) allows easily
to solve the expressions for ω0eq and Qeq parameters. Free parameters then are chosen with
respect to the prescribed optimization criteria.
Similarly the other digital filters or their parts were analyzed as well; e.g. SFG-based 2nd-
order sections, published in Tichá (2006), equalizers for audio-signal processing, or a tunable
2nd-order bandpass/bandstop filter structure. All the solved structures were evaluated with
the excellent results and MAPLE environment was found as fully acceptable and sufficiently
flexible for the required post-processing of the results obtained.
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The presented structure does not require any special procedure for design formulas. On the
other hand, it could be interesting to analyze the sensitivity properties.
The obtained expressions are suitable for the estimation of the "starting continuous-time pa-
rameters" influence to the digital filter parameters changes. As an example, the following
graph in Fig. 25 illustrates the SQ

a1,a2 sensitivity dependence on the Q-factor, when the ratio
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is set to xc = 5. The graph in Fig. 26 presents the SQ
a1,a2 sensitivities changes for

fixed Q = 2 and variable xc. This graph simultaneously explains the realization problems of
direct-form structures in the case of relatively high sampling frequencies fc. Similar results
were gained in the case of Sω0

a1,a2 sensitivities.
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Note that the formulas obtained are valid directly for the first and the second canonic direct
form of the digital filters – see Mitra (2005), Laipert et al. (2000), Antoniou (1979) and oth-
ers. For the other 2nd-order structures it is necessary to express the transfer function H(z)
coefficients a1 a2 as the functions of the analyzed network parameters.

The second example presents the 2nd-order allpass filter from Mitra (2005), based on lattice struc-
ture. The block diagram is showed in Fig. 27 and the computed symbolic transfer function in
Fig. 28.
The following computations show better sensitivities of the analyzed filter in comparison to
the direct-form structure; the symbolic expressions for the SQ
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k1

= −24.50245745, SQ
k2

=

10.07523914 and Sω0
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Fig. 27. The 2nd-order all-pass.

> A9:= syrup(obvod9,ac):

> assign(A9):
> H9:= collect(v[11]/v[1],
> z,factor);

H9 :=
k2 z2 + k1 (k2 + 1) z + 1
z2 + k1 (k2 + 1) z + k2

Fig. 28. The all-pass simulation result.

The third example introduces state-space structure from Mitra (2005) whose block diagram is in
Fig. 29. This structure contains 9 unknown parameters, which represents 4 freedom degrees
in design conditions. Symbolic transfer function is expressed by Eqs.(45)–(47)

H14 =
NH14
DH14

(45)

where

NH14 = d z2 + (c1 b1 + c2 b2 − d (a22 + a11)) z + d ∆ + (−c1 a22 + c2 a21) b1 + (c1 a12 − c2 a11) b2
(46)

DH14 = z2 − (a22 + a11) z + ∆ ; ∆ = a11 a22 − a12 a21 . (47)

The design conditions can be solved directly in the z-plane, or, after transformation to the
s-plane. In this case, the transformed denominator receives the form (48)

DH14s = s2 +
4 (1 − ∆) s

T (1 + a11 + a22 + ∆)
+

4 (1 − a22 + ∆ − a11)

T2 (1 + a11 + a22 + ∆)
(48)

A comparison of Eq. (48) to the denominator of the standard form of H(s) (16) allows easily
to solve the expressions for ω0eq and Qeq parameters. Free parameters then are chosen with
respect to the prescribed optimization criteria.
Similarly the other digital filters or their parts were analyzed as well; e.g. SFG-based 2nd-
order sections, published in Tichá (2006), equalizers for audio-signal processing, or a tunable
2nd-order bandpass/bandstop filter structure. All the solved structures were evaluated with
the excellent results and MAPLE environment was found as fully acceptable and sufficiently
flexible for the required post-processing of the results obtained.
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Fig. 29. The general state-space structure.

7. An example of digital filter design

7.1 Introduction
Digital filter design, especially based on cascade connection of the 2nd-order sections usually
does not bring problems. But, in the case of non-standard operating conditions, e.g. too high
ratio of the sampling-frequency-to-cut-off-filter-frequency, the "standard" direct-form struc-
tures fail to satisfy the given requirements. Here the usage of more sophisticated filter sections
could be the possible solution. Nevertheless, such structures require more demanding design
with respect to the inherency of free design parameters. The two-integrator based sections or
state-space biquads introduced in Laipert et al. (2000), Antoniou (1979) or Mitra (2005) should
serve as the examples. The design of such sections needs more complex approach, respecting
not only the "basic" requirements, but also dynamics, sensitivity, building blocks parameters
spread and others.
An efficient design of such filters should be based either on an rigorous mathematical de-
scription of the main parameters, or an effective global optimization procedure. This section
describes the second way, where the Differential Evolutionary Algorithms were used as the
powerful design tool. The reason is in good experience with DE algorithms usage in analog
filter optimized design.
The method used is explained on a practical example of state-space 2nd-order IIR section de-
sign procedure. The DE algorithms were implemented in MAPLE mathematical program,
allowing symbolical computations. Design includes the "basic" computation of the main fil-
ter parameters and multi-criteria optimization covering sensitivity properties, dynamics and
partial blocks parameter spread. To accelerate necessary computations, filter transfer func-
tion, sensitivity expressions and other parameters were preprocessed in symbolic form using

SYRUP library. The symbolic analysis of digital filters using SYRUP was described in Tichá &
Martinek (2007), sensitivity computations use the "equivalent sensitivity" approach presented
at the last DT Workshop Tichá (2006).

7.2 Design conditions
Let us start by remembering the basic principle of biquad design. It is based on a comparison
of a given transfer function H(z) coefficients to the symbolically expressed coefficients of the
designed circuit transfer function Hs(z). The comparison leads to the system of design equa-
tions for unknown filter component values. Considering "standard" H(z) notation in the form
(49)

H(z) =
NH(z)
DH(z)

=
n2 z2 + n1 z + n0

z2 + d1 z + d0
, (49)

Hs(z) = (d z2 + (c1 b1 + c2 b2 − d (a11 + a22)) z + d (a11 a22 − a21 a12)− c2 a11 b2

− c1 a22 b1 + c1 b2 a12 + c2 a21 b1)/(z2 − (a11 + a22) z + a11 a22 − a21 a12) (50)

five equations for unknown filter component parameters are necessary. Provided that the
filter structure is canonical, the solution of the design equations system is unique for five
multiplier constants. If it be to the contrary, we have some freedom parameters on disposal
which usually influence filter sensitivity properties, dynamic behavior and component values
spread and can be set independently. They are suitable for the filter design optimization.
As mentioned, the complex design respecting all the additional optimization criteria is hardly
solved by rigorous mathematical procedure. An application of the global optimization algo-
rithms, in our case the differential evolutionary algorithm (DEA) was found to be simpler
and more efficient way. Its usage is demonstrated on the example of the state-space biquad
described in Mitra (2005), whose block diagram is shown in Fig. 29.
Symbolical analysis of the filter block diagram was performed in the previous Section 6 and
the resulting transfer function is expressed in the Eqs. (45) - to - (48). It contains 9 unknown
component parameters, which represent 4 freedom degrees in design conditions. It means, all
the additional optimization criteria can be taken into account.

A "basic" design
is usually solved either directly by comparison of the corresponding coefficients of the given
H(z) and the symbolical Hs(z) under (50) in the z-plane, or after z ⇔ s transformation of
the Hs(z) to s-plane, similarly to the sampled-data biquad design procedure. Note that both
ways are possible in MAPLE program environment, but the first is preferred with respect to
the simpler design equations. In contrast to the mentioned procedures, the application of DE
algorithm does not require creation of the design equations.

Sensitivity optimization
is based on equivalent ω0 and Q sensitivities, discussed in Section 5.

Filter dynamics optimization
serves for equalization of the signal maxims inside filter structure. The critical points are
usually inputs or outputs of delay elements and outputs of the summers and multipliers. In
the case of the solved state-space biquad the outputs of delay elements D were considered.
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five equations for unknown filter component parameters are necessary. Provided that the
filter structure is canonical, the solution of the design equations system is unique for five
multiplier constants. If it be to the contrary, we have some freedom parameters on disposal
which usually influence filter sensitivity properties, dynamic behavior and component values
spread and can be set independently. They are suitable for the filter design optimization.
As mentioned, the complex design respecting all the additional optimization criteria is hardly
solved by rigorous mathematical procedure. An application of the global optimization algo-
rithms, in our case the differential evolutionary algorithm (DEA) was found to be simpler
and more efficient way. Its usage is demonstrated on the example of the state-space biquad
described in Mitra (2005), whose block diagram is shown in Fig. 29.
Symbolical analysis of the filter block diagram was performed in the previous Section 6 and
the resulting transfer function is expressed in the Eqs. (45) - to - (48). It contains 9 unknown
component parameters, which represent 4 freedom degrees in design conditions. It means, all
the additional optimization criteria can be taken into account.

A "basic" design
is usually solved either directly by comparison of the corresponding coefficients of the given
H(z) and the symbolical Hs(z) under (50) in the z-plane, or after z ⇔ s transformation of
the Hs(z) to s-plane, similarly to the sampled-data biquad design procedure. Note that both
ways are possible in MAPLE program environment, but the first is preferred with respect to
the simpler design equations. In contrast to the mentioned procedures, the application of DE
algorithm does not require creation of the design equations.

Sensitivity optimization
is based on equivalent ω0 and Q sensitivities, discussed in Section 5.
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serves for equalization of the signal maxims inside filter structure. The critical points are
usually inputs or outputs of delay elements and outputs of the summers and multipliers. In
the case of the solved state-space biquad the outputs of delay elements D were considered.
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Optimization requires an evaluation of partial transfers from filter input to the considered
block outputs and their maximum magnitude. As sufficient was found to test partial transfer
magnitudes at frequency corresponding to ω0eq and their comparison to the "full" transfer
magnitude value.

7.3 Algorithm used
Differential Evolutionary Algorithms applied previously in solution of the analog filter design
presented e.g. in Tichá & Martinek (2005) were successfully used in the described tasks as
well. To improve computation efficiency, a convergence accelerator using simplex built-in
procedure was used. Objective function is critical for the optimum design and it was defined
as follows

f it = we

5

∑
i=0

δ2
i + wp

mmax

mmin
+ ws PPs + wd PPd , (51)

where δi means transfer function coefficient relative errors, PPs represents penalty function
for sensitivity optimization defined as

PPs =
4

∑
i=1

|Sω0eq
mi |+

4

∑
i=1

|SQeq
mi | , (52)

and PPd represents dynamics error

PPd =
2

∑
i=1

max|(H(jω))|
max|(HDi(jω))| − 1 . (53)

Parameters we, wp, ws and wd characterize weights of objective function components.

7.4 Results
The described optimized design procedure was tested for more examples of biquadratic func-
tions under different operating conditions. As the first example the band-pass section with
equivalent parameters f0 = 1 kHz, Qeq = 5, gain constant h = 1 and sampling frequency
fc = 48 kHz is introduced.
Design was made with respect to the sensitivity and building block parameters minimization,
without other limitations. No free parameters were numerically defined.
The design results are:
a11 = 0.9787125, a12 = −0.0564576, a21 = 0.290288, a22 = 0.9787125, b1 = 0.0762136, b2 =
−0.1492225, c1 = 0.150311, c2 = −0.0917967, d = 0.0136064.
Parameter values spread mmax

mmin
= 71.93 and sensitivity values

Sω0
a11 = Sω0

a22 = −0.8648, Sω0
a12 = Sω0

a21 = 0.4845 SQ
a11 = SQ

a22 = 36.85, SQ
a12 = SQ

a21 = 1.126.
Transfer function coefficient errors were typically δi ≈ 10−7.
DE algorithm parameters: Number of members in population typically NP = 90 − 120, con-
trol parameters CR = 0.75, F = 0.8. The results were obtained after approximately 100 − 200
generations (iteration cycles).
It is important to say, similar other results were gained as well, with respect to more free
parameters.
The second example concerns LP section design with similar parameters to the previous ex-
ample: f0 = 1 kHz, Qeq = 5, gain constant h = 1 and sampling frequency fc = 48 kHz. Here
the dynamics optimization was preferred (of course with respect to the previously defined).

The design results are:
a11 = 0.962724, a12 = 0.0892054, a21 = −0.186585, a22 = 0.994701, b1 = 0.0442087e − 1,
b2 = −0.116697, c1 = −0.994701, c2 = −0.517322, d = 0.0120655e − 1.
Parameter values spread mmax

mmin
= 82.44 and sensitivity values

Sω0
a11 = −0.3957, Sω0

a22 = −1.349, Sω0
a12 = Sω0

a21 = 0.4920 SQ
a11 = 37.31, SQ

a22 = 36.36, SQ
a12 = SQ

a21 =
1.143.
Transfer function coefficient errors were similarly to the previous example typically δi ≈ 10−7.
Filter dynamic behavior optimization gives all the partial frequency responses approximately
equal with maximum error ≤ 1.8 dB.

8. Conclusions

This chapter introduces some “non-standard” views to the sampled-data and digital filter
properties and design. The main goals can be formulated as follows:
As shown, the digital filter direct form prototype can serve for a wider area of implementa-
tions. Comparing the implementation using SI memory cells to the modified ones based on
simple BD or FD integrators and differentiators, the "exact" implementation shows problems
with higher sensitivities and parameter values spread. On the other hand, an influence of
SI-blocks parasitics is lower, especially the output conductances go cause less frequency shifts
and can be respected in design procedure. One possible improvement would be to insert some
free parameters into this circuit, e.g. optional gain of the memory cells, but this is a topic for
further research.
Sensitivity concept and symbolic analysis are efficient tools for digital filter design, especially
when "non-standard" design conditions are required. As shown, the equivalent sensitivity
principle allows the appropriate selection of filter structure and, after re-computation, to check
the acceptable word-length and ω0eq to fc ratio.
A new application area of the MAPLE program and its library SYRUP has been introduced.
In contrast to the commonly used programs for digital filter design, the presented approach
offers wider possibility in filter properties analysis and the evaluated results post-processing.
The last section aims at presenting new ways in "complex" design of digital and analog filters
using stochastic algorithms. As shown, especially Differential Evolutionary Algorithms are
very suitable tool for this purpose and give excellent results in multi-criteria design. Their
use in digital filter design presented here is rather demonstrative, more complicated tasks
can be successfully solved. The new in this approach is the conjoined application of more
design criteria and possibility to prefer such criterion which is more important in particular
design. The design procedure is implemented in mathematical program and this allows its
easy modification and/or post-processing of the gained results if necessary.
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1. Introduction    

The field of two-dimensional filters and their design methods have been approached by 
many researchers, for more than three decades (Lim, 1990; Lu & Antoniou, 1992). A 
commonly-used design technique for 2D filters is to start from a specified 1D prototype 
filter and transform its transfer function using various frequency mappings in order to 
obtain a 2D filter with a desired frequency response. These are essentially spectral 
transformations from s to z plane via bilinear or Euler transformations followed by z to 

1 2(z ,z )  mappings, approached in early reference papers (Pendergrass et al., 1976; Hirano & 
Aggarwal, 1978; Harn & Shenoi, 1986). Generally these spectral transformations conserve  
stability, so from 1D prototypes various stable recursive 2D filters can be obtained.   
There are several classes of filters with orientation-selective frequency response, useful in 
some image processing tasks, such as edge detection, motion analysis etc. An important 
class are the steerable filters, synthesized as a linear combination of a set of basis filters 
(Freeman & Adelson, 1991). Another important category are Gabor filters, with applications 
in some complex tasks in image processing. A major reference on oriented filters is (Chang 
& Aggarwal, 1977), where a technique for rotating the frequency response of separable 
filters is developed. The proposed method considers transfer functions in rational powers of 
z and realized by input-output signal array interpolations. Anisotropic, in particular 
elliptically-shaped filters have also been studied extensively and are used in some 
interesting applications, e.g. in remote sensing for directional smoothing applied to weather 
images (Lakshmanan, 2004), also in texture segmentation and pattern recognition. Other 
directionally selective operators are proposed in (Danielsson, 1980).  
Another particular class are the wedge filters, named so due to their symmetric wedge-like 
shape in the frequency plane. They find interesting applications, e.g. in texture classification 
(Randen & Husoy, 1999). In (Simoncelli & Farid, 1996) the steerable wedge filters were 
introduced, which are used to analyze local orientation patterns in images.  
Linear filter banks of various shapes, combined with pattern recognition techniques have 
been widely used in image analysis and enhancement, texture segmentation etc. In 
particular, directional filter banks provide an orientation-selective image decomposition. 
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The Bamberger directional filter bank (Bamberger & Smith, 1992), is a purely directional 
decomposition that provides excellent frequency domain selectivity with low computational 
complexity. This family of filter banks has been successfully used for image denoising, 
character recognition, image enhancement etc. Diamond filters are currently used as anti-
aliasing filters for the conversion between signals sampled on the rectangular sampling grid 
and the quincunx sampling grid. Some design techniques, mainly for FIR diamond filters 
were developed (Lim & Low, 1997; Low & Lim, 1998).  
Stability of the two-dimensional recursive filters is also an important issue and is more 
complicated than for 1D filters. For 2D filters, in general, it is quite difficult to take stability 
constraints into account during the stage of approximation (O’Connor, 1978). For this 
reason, various techniques were developed to separate the stability from the approximation 
problem. If the designed filter becomes unstable, some stabilization procedures are needed 
(Jury, 1977). Unlike 1D filters, in 2D filters the numerator can affect the filter stability and 
can sometimes stabilize an otherwise unstable filter.  
The design methods in the frequency domain described in this chapter are also based on 
spectral transformations, or frequency transformations, a term more often used in text. 
Starting from an 1D prototype filter with a desired characteristics, for instance low-pass 
maximally-flat, selective low-pass or band-pass etc., some specific spectral transformations 
will be applied in order to obtain the 2D filter with a desired shape. Various types of 2D 
filters will be approached: directional selective filters, oriented wedge filters, fan filters, 
diamond-shaped filters etc. All these filters have already found specific applications in 
image processing. The general case will be approached, when we start from a 1D prototype 
which is a common digital filter, either maximally-flat or equiripple (Butterworth, 
Chebyshev, elliptic etc.) given by a transfer function in variable z, which is decomposed into 
a product of elementary functions of first or second order. In this case the design consists in 
finding the specific complex frequency transformation from the variable z to the complex 
plane 1 2(z ,z ) . Once found this mapping, the 2D filter function results directly through 
substitution. The case of zero-phase 2D filters will be treated as well, since they are very 
useful in various image filtering applications due to the absence of phase distortions. This 
method is at the same time simple, efficient and versatile, since once found the adequate 
frequency transformation, it can be applied to different prototype filters obtaining the 2D 
filter. The latter inherits the selectivity properties of its 1D counterpart (bandwidth, flatness, 
transition band etc.). Changing the prototype filter parameters will change the properties of 
the obtained 2D filter. All the proposed design techniques are mainly analytical but also 
involve numerical optimization, in particular rational approximations (Padé or 
Chebyshev-Padé). Since the design starts from a factorized transfer function, the 2D filter 
function will also result directly factorized, which is a major advantage in its 
implementation. For each specified shape of the 2D filter, a particular frequency 
transformation is derived. 
Some proposed methods involve the bilinear transform as an intermediate step. Depending 
on their shape, the designed filters may present non-linearity distortions towards the 
margins of the frequency plane, due to the frequency warping effect. In order to compensate 
for these errors, a pre-warping may be applied, which increases the filter order. Other 
proposed methods avoid from the start the use of bilinear transform and the filter 
coefficients result through a change of frequency variable and a bivariate Taylor or 

 

Chebyshev expansion of the filter frequency response. Finally the filter transfer function in 
1z  and 2z  results directly by identification of the 2D Z transform terms. 

An original design method is proposed in section 5 for a class of filters specified by a periodic 
function expressed in polar coordinates in the frequency plane. The contour plots of their 
frequency response, resulted as sections with planes parallel with the frequency plane, can be 
defined as closed curves, described in terms of a variable radius which can be written as a 
rational and periodic function of the current angle formed with one of the axes. In this class of 
filters we studied two-lobe filters, selective four-lobe filters with an arbitrary orientation 
angle, fan filters and diamond filters.  
Several related design methods proposed by the author for other types of 2D zero-phase 
filters, especially with circular and elliptical symmetry were developed in (Matei, 2009, b). In 
the last section of the chapter, a few applications of the designed wedge filter will be 
presented through simulation results.  

 
2. 1D Prototype Filters and Spectral Transformations Used in 2D Filter Design 

An essential step in designing temporal and spatial filters is the approximation. As 
mentioned in the above introduction, the proposed design methods for 2D recursive filters 
are based on 1D prototype filters with imposed specifications. For the 2D filters approached 
here, we start from 1D digital filters described by a transfer function H(z) , resulted from one 
of the common approximations (Butterworth, Chebyshev, elliptical etc.) and satisfying the 
desired specifications. Analog prototype filters with transfer functions in variable s can also 
be used. The choice depends on the 2D filter type, which requires a specific frequency 
transformation; this must be as simple as possible in order to obtain an efficient, low-order 
filter. On the other hand we may start from a complex or real-valued filter prototype. In the 
latter case zero-phase 2D filters will result, which are free of phase distortions. 
Let us consider a recursive digital filter of order N with the transfer function: 
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We consider this general transfer function with M N  factorized into rational functions of 
first and second order. An odd order filter H(z)  has at least one first order factor: 
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The transfer function also contains second-order factors referred to as biquad functions: 
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where in general the second-order polynomials at the numerator and denominator have 
complex-conjugated roots. The main issue approached in this chapter is to find the transfer 
function of the desired 2D filter 2D 1 2H (z ,z )  using appropriate frequency transformations of 



New Design Methods for Two-Dimensional Filters  
Based on 1D Prototypes and Spectral Transformations 93

 

The Bamberger directional filter bank (Bamberger & Smith, 1992), is a purely directional 
decomposition that provides excellent frequency domain selectivity with low computational 
complexity. This family of filter banks has been successfully used for image denoising, 
character recognition, image enhancement etc. Diamond filters are currently used as anti-
aliasing filters for the conversion between signals sampled on the rectangular sampling grid 
and the quincunx sampling grid. Some design techniques, mainly for FIR diamond filters 
were developed (Lim & Low, 1997; Low & Lim, 1998).  
Stability of the two-dimensional recursive filters is also an important issue and is more 
complicated than for 1D filters. For 2D filters, in general, it is quite difficult to take stability 
constraints into account during the stage of approximation (O’Connor, 1978). For this 
reason, various techniques were developed to separate the stability from the approximation 
problem. If the designed filter becomes unstable, some stabilization procedures are needed 
(Jury, 1977). Unlike 1D filters, in 2D filters the numerator can affect the filter stability and 
can sometimes stabilize an otherwise unstable filter.  
The design methods in the frequency domain described in this chapter are also based on 
spectral transformations, or frequency transformations, a term more often used in text. 
Starting from an 1D prototype filter with a desired characteristics, for instance low-pass 
maximally-flat, selective low-pass or band-pass etc., some specific spectral transformations 
will be applied in order to obtain the 2D filter with a desired shape. Various types of 2D 
filters will be approached: directional selective filters, oriented wedge filters, fan filters, 
diamond-shaped filters etc. All these filters have already found specific applications in 
image processing. The general case will be approached, when we start from a 1D prototype 
which is a common digital filter, either maximally-flat or equiripple (Butterworth, 
Chebyshev, elliptic etc.) given by a transfer function in variable z, which is decomposed into 
a product of elementary functions of first or second order. In this case the design consists in 
finding the specific complex frequency transformation from the variable z to the complex 
plane 1 2(z ,z ) . Once found this mapping, the 2D filter function results directly through 
substitution. The case of zero-phase 2D filters will be treated as well, since they are very 
useful in various image filtering applications due to the absence of phase distortions. This 
method is at the same time simple, efficient and versatile, since once found the adequate 
frequency transformation, it can be applied to different prototype filters obtaining the 2D 
filter. The latter inherits the selectivity properties of its 1D counterpart (bandwidth, flatness, 
transition band etc.). Changing the prototype filter parameters will change the properties of 
the obtained 2D filter. All the proposed design techniques are mainly analytical but also 
involve numerical optimization, in particular rational approximations (Padé or 
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function will also result directly factorized, which is a major advantage in its 
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Some proposed methods involve the bilinear transform as an intermediate step. Depending 
on their shape, the designed filters may present non-linearity distortions towards the 
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be used. The choice depends on the 2D filter type, which requires a specific frequency 
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We consider this general transfer function with M N  factorized into rational functions of 
first and second order. An odd order filter H(z)  has at least one first order factor: 
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the form: 1 2F( , )   . The elementary transfer functions (2) and (3) can be put into the 
form of a  complex frequency response: 
 

   1 0 1 1 0H ( j ) b b cos jb sin a cos jsin                                     (4) 
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b (b b )cos j(b b )sin P( )H (j )
a (1 a )cos j(1 a )sin Q( )
     

  
     

                              (5) 

 
We notice that the first- and second-order functions have a similar form when expressed as 
a ratio of complex numbers. Therefore, as shown further, the corresponding 2D transfer 
functions will be implemented with convolution kernels of the same size. The next step 
starts from the expressions (4) and (5) of the frequency response and uses of the following 
accurate rational approximations for sine and cosine on [- , ]  : 
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The above expressions were obtained through a Chebyshev-Padé approximation, found 
using a symbolic computation software. The advantage of these expressions is that they 
have the same denominator and can be directly substituted into (4) and (5), yielding a 
rational expression of the frequency response jH(e )  of the same order. 
In order to design a zero-phase 2D filter, we start from zero-phase prototypes, with real-
valued transfer functions. Such a filter may be obtained by finding a rational approximation 
of the magnitude characteristics of the given prototype. The magnitude H( )  taken from 

jH(z) H(e )  of the general form (1) can be approximated by a ratio of polynomials in even 
powers of frequency  , on the range [ , ]   . In general this filter will be described by: 
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where M N  and N is the filter order. In (Matei, 2009, b) a different version of 
approximation was proposed, which using the change of variable arccosx x cos      
yields a rational approximation of H( )  in the variable cos  on the range [ , ]   : 
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This rational trigonometric approximation is particularly useful in designing zero-phase 
circular or elliptically-shaped filters, approached in (Matei, 2009, b), but less efficient for 
other 2D filters like directional, wedge-shaped etc. 

 

For instance, considering as 1D prototype a type-2 Chebyshev digital filter with the 
parameters: order N 4 , stopband attenuation sR 40 dB and passband–edge frequency 
 p 0.5 , where 1.0 is half the sampling frequency, its transfer function in z has the form: 
 

   2 2H(z) 0.012277 z 0.012525 z 0.012277 z 1.850147 z 0.862316                   (10) 
 
Using a Chebyshev-Padé approximation we can determine the following real-valued zero-
phase frequency response which approximates accurately the magnitude of the function (10): 
 

   j 2 4 2 4
a1H(e ) H ( ) 0.9403 0.57565 0.0947 1 2.067753 4.663147               (11) 

 
3. Directional Filters 

We propose a design method for a class of 2D oriented low-pass filters which select narrow 
domains along specified directions in the frequency plane ( 1 ,2 ). Such filters can be used 
in selecting lines with a given orientation from an input image. Since we envisage to design 
filters of minimum order, we use IIR filters as prototypes. Here we treat the general case 
using a complex frequency transformation. Other related methods for directional filter 
design were discussed in (Matei, 2009, b). 
Starting from a real-valued prototype 1H( ) , a 2D oriented filter is obtained by rotating the 
axes of the plane  1 2( , )  with an angle  , as described by the linear transformation: 
 

        
               
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2 2

cos sin
sin cos

                                                 (12) 

 
where  1 2,  are the original frequency variables and  1 2,  the rotated ones. The filter 
orientation is specified by an angle   about 1 -axis and is defined by the following 1D to 
2D spectral transformation of the frequency response  1 2H( , ) :    1 2cos sin . By 
substitution, we obtain the transfer function of the oriented filter   1 2H ( , ) : 
 

        1 2 1 2H ( , ) H( cos sin )                                                (13) 
 
The filter   1 2H ( , )  has the magnitude along the line      1 2cos sin 0  identical with 
the prototype H( )  and constant along the line    1 2sin cos 0  (longitudinal axis). 
Next we will determine a convenient 1D to 2D complex transformation which allows for 
obtaining an oriented 2D filter from a 1D prototype filter. The special case of zero-phase 
directional filters was extensively treated in (Matei, 2009, b). 

 
3.1 Design Method for 2D Directional Filters Based on Frequency Transformation 
In the following section we will introduce a design method which allows one to obtain a 2D 
discrete orientation-selective filter. The desired filter will be derived directly from a 1D 
discrete prototype filter through a complex frequency transformation.  
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We notice that the first- and second-order functions have a similar form when expressed as 
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The above expressions were obtained through a Chebyshev-Padé approximation, found 
using a symbolic computation software. The advantage of these expressions is that they 
have the same denominator and can be directly substituted into (4) and (5), yielding a 
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where  1 2,  are the original frequency variables and  1 2,  the rotated ones. The filter 
orientation is specified by an angle   about 1 -axis and is defined by the following 1D to 
2D spectral transformation of the frequency response  1 2H( , ) :    1 2cos sin . By 
substitution, we obtain the transfer function of the oriented filter   1 2H ( , ) : 
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The filter   1 2H ( , )  has the magnitude along the line      1 2cos sin 0  identical with 
the prototype H( )  and constant along the line    1 2sin cos 0  (longitudinal axis). 
Next we will determine a convenient 1D to 2D complex transformation which allows for 
obtaining an oriented 2D filter from a 1D prototype filter. The special case of zero-phase 
directional filters was extensively treated in (Matei, 2009, b). 

 
3.1 Design Method for 2D Directional Filters Based on Frequency Transformation 
In the following section we will introduce a design method which allows one to obtain a 2D 
discrete orientation-selective filter. The desired filter will be derived directly from a 1D 
discrete prototype filter through a complex frequency transformation.  
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A discrete 1D filter is generally described by a transfer function H(z) . The complex variable 
 j sz e e  will be mapped into a 2D function  1 2F (z ,z ) , where the index   denotes the 

dependence upon the orientation angle. Using the frequency transformation (13) which 
defines the orientation-selective filter with the orientation angle  , we have successively:  
 

           1 2 1 2j( cos sin ) s cos s sin cos sin
1 2 1 1 2 2e e e (z ) (z ) f (s ) f (s )                          (14) 

 
Therefore the complex frequency transformation is   cos sin

1 2z z z . In (Chang & Aggarwal, 

1977) the frequency transformation used is   1 2z z z , where   and   are integers. The 
rotation angle is    arctan( ) . Using suitable interpolation functions, an interpolated 
array is generated where signal values are defined on new grid points. The whole scheme 
requires an input and an output interpolator. For an arbitrary angle, the values of   and   
may result inconveniently large, which might complicate the interpolation process.  
The proposed design method gives another possible solution and is based on finding 
appropriate approximations for the two complex functions:  1s cos

1 1f (s ) e ,  2s sin
2 2f (s ) e . 

These can be developed either in a power series (Taylor) or in a rational function using the 
Padé or Chebyshev-Padé approximations. We will first use the Padé approximation which 
has the advantage of yielding analytical expressions for the coefficients. We easily derive the 
following approximations, as for real variable functions: 
 

    
(a) (b) (c) (d) 

Fig. 1. Plots of exact functions vs. their approximations: (a) 1cos( cos )  ; (b) 1sin( cos )  ;  
(c) 1cos( sin )  ; (d) 1sin( sin )   
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f (s ) 1 0.5cos s 0.08333cos s 1 0.5cos s 0.08333cos s f (s )

f (s ) 1 0.5sin s 0.08333sin s 1 0.5sin s 0.08333sin s f (s )

             

             
   (15) 

 
Since 1 1f (s )  and 2 2f (s )  are complex functions (  1 1s j ,  2 2s j ), the above approximations 
must hold separately for the real and imaginary parts, for instance: 
 

                  1 1 1 a1 1 1 1 1 a1 1Re f ( j ) cos( cos ) Re f ( j ) Im f ( j ) sin( cos ) Im f ( j )     (16) 
 
In Fig.1 we plotted comparatively the real and imaginary parts of the two complex functions 

1 1f (s ) , 2 2f (s )  and of their rational approximations a1 1f (s ) , a2 2f (s )  given in (15). We notice 
that the proposed approximations are very accurate in the range  [ , ] . 

 

As shown in the following section, even using this low-order approximation a very good 
orientation-selective filter can be obtained. From the functions 1 1f (s )  and 2 2f (s )  we derive 
two corresponding discrete functions in the complex variables 1z , 2z . This can be achieved 
using the bilinear transform, a first-order approximation of the natural logarithm function. 
The sample interval can be taken T 1  so the bilinear transform is   s 2(z 1) (z 1) . 
Substituting it into relations (15), we obtain: 
 





             
 

             

2 1 2 2
1 1 1 1

1 1 2 1 2 2
1 1 1 1

(1 sin 0.4sin ) z (2 0.8sin ) (1 sin 0.4sin ) z B (z )F (z )
(1 sin 0.4sin ) z (2 0.8sin ) (1 sin 0.4sin ) z A (z )

     (17) 





             
 

             

2 1 2 2
2 2 2 2

2 2 2 1 2 2
2 2 2 2

(1 cos 0.4cos ) z (2 0.8cos ) (1 cos 0.4cos ) z B (z )F (z )
(1 cos 0.4cos ) z (2 0.8cos ) (1 cos 0.4cos ) z A (z )

     (18) 

 
We used both negative and positive powers of 1z  and 2z  to put in evidence the coefficients 
symmetry. The function denoted  1 2F (z ,z )  will thus be the product of the above functions: 
 

    1 2 1 1 2 2 1 2 1 2F (z ,z ) F (z ) F (z ) B (z ,z ) A (z ,z )                                 (19) 
 

where   1 2 1 1 2 2B (z ,z ) B (z ) B (z )  and   1 2 1 1 2 2A (z ,z ) A (z ) A (z ) .                        
An important remark here is that the derived frequency transformation is separable, as shows 
relation (19). Separability is a very desirable property of the 2D filter functions. However, 
the designed 2D oriented filters may not preserve this useful property. 
Let 1B , 2B , 1A , 2A  be the coefficient vectors corresponding to 1 1B (z ) , 2 2B (z ) , 1 1A (z ) , 

2 2A (z ) , identified from (17), (18) and B , A the 3 3  matrices corresponding to  1 2B (z ,z ) , 

 1 2A (z ,z ) . The matrices B  and A  of size 3 3  result as:   T
1 2B B B ,   T

1 2A A A , 
where the upper index T denotes transposition and the symbol   outer product of vectors. 
The frequency transformation  1 2z F (z ,z )  can be finally expressed in the matrix form: 
 

 


  


        
       

T1 1
1 1 2 2

1 2 T1 1
1 1 2 2

z 1 z z 1 z
z F (z ,z )

z 1 z z 1 z

B

A
                                 (20) 

 
where   is matrix/vector product. Throughout the chapter we will use the term template, 
common in the field of cellular neural networks, referring to the coefficient matrices 
corresponding to the numerator and denominator of a 2D filter transfer function 1 2H(z ,z ) . 
We will use mainly odd-sized templates (e.g. 3 3 , 5 5 ) which correspond to even order 
filters and allow for using both positive and negative powers of 1z  and 2z . 
Design example: 
For an orientation angle    7  we have  sin 0.43389 ,  cos 0.90097  and we obtain: 
 

 


  


       
   

       

1 1
1 21 1 2 2

1 2 1 1
1 1 2 2 1 2

B (z ,z )(0.6414 z 1.8494 1.5092 z ) (0.4237 z 1.3506 2.2257 z )z F (z ,z )
(1.5092 z 1.8494 0.6414 z ) (2.2257 z 1.3506 0.4237 z ) A (z ,z )

(21) 
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A discrete 1D filter is generally described by a transfer function H(z) . The complex variable 
 j sz e e  will be mapped into a 2D function  1 2F (z ,z ) , where the index   denotes the 

dependence upon the orientation angle. Using the frequency transformation (13) which 
defines the orientation-selective filter with the orientation angle  , we have successively:  
 

           1 2 1 2j( cos sin ) s cos s sin cos sin
1 2 1 1 2 2e e e (z ) (z ) f (s ) f (s )                          (14) 

 
Therefore the complex frequency transformation is   cos sin

1 2z z z . In (Chang & Aggarwal, 

1977) the frequency transformation used is   1 2z z z , where   and   are integers. The 
rotation angle is    arctan( ) . Using suitable interpolation functions, an interpolated 
array is generated where signal values are defined on new grid points. The whole scheme 
requires an input and an output interpolator. For an arbitrary angle, the values of   and   
may result inconveniently large, which might complicate the interpolation process.  
The proposed design method gives another possible solution and is based on finding 
appropriate approximations for the two complex functions:  1s cos

1 1f (s ) e ,  2s sin
2 2f (s ) e . 

These can be developed either in a power series (Taylor) or in a rational function using the 
Padé or Chebyshev-Padé approximations. We will first use the Padé approximation which 
has the advantage of yielding analytical expressions for the coefficients. We easily derive the 
following approximations, as for real variable functions: 
 

    
(a) (b) (c) (d) 

Fig. 1. Plots of exact functions vs. their approximations: (a) 1cos( cos )  ; (b) 1sin( cos )  ;  
(c) 1cos( sin )  ; (d) 1sin( sin )   
 

   
   

2 2 2 2
1 1 1 1 1 1 a1 1

2 2 2 2
2 2 2 2 2 2 a2 2

f (s ) 1 0.5cos s 0.08333cos s 1 0.5cos s 0.08333cos s f (s )

f (s ) 1 0.5sin s 0.08333sin s 1 0.5sin s 0.08333sin s f (s )

             

             
   (15) 

 
Since 1 1f (s )  and 2 2f (s )  are complex functions (  1 1s j ,  2 2s j ), the above approximations 
must hold separately for the real and imaginary parts, for instance: 
 

                  1 1 1 a1 1 1 1 1 a1 1Re f ( j ) cos( cos ) Re f ( j ) Im f ( j ) sin( cos ) Im f ( j )     (16) 
 
In Fig.1 we plotted comparatively the real and imaginary parts of the two complex functions 

1 1f (s ) , 2 2f (s )  and of their rational approximations a1 1f (s ) , a2 2f (s )  given in (15). We notice 
that the proposed approximations are very accurate in the range  [ , ] . 

 

As shown in the following section, even using this low-order approximation a very good 
orientation-selective filter can be obtained. From the functions 1 1f (s )  and 2 2f (s )  we derive 
two corresponding discrete functions in the complex variables 1z , 2z . This can be achieved 
using the bilinear transform, a first-order approximation of the natural logarithm function. 
The sample interval can be taken T 1  so the bilinear transform is   s 2(z 1) (z 1) . 
Substituting it into relations (15), we obtain: 
 





             
 

             

2 1 2 2
1 1 1 1

1 1 2 1 2 2
1 1 1 1

(1 sin 0.4sin ) z (2 0.8sin ) (1 sin 0.4sin ) z B (z )F (z )
(1 sin 0.4sin ) z (2 0.8sin ) (1 sin 0.4sin ) z A (z )

     (17) 





             
 

             

2 1 2 2
2 2 2 2

2 2 2 1 2 2
2 2 2 2

(1 cos 0.4cos ) z (2 0.8cos ) (1 cos 0.4cos ) z B (z )F (z )
(1 cos 0.4cos ) z (2 0.8cos ) (1 cos 0.4cos ) z A (z )

     (18) 

 
We used both negative and positive powers of 1z  and 2z  to put in evidence the coefficients 
symmetry. The function denoted  1 2F (z ,z )  will thus be the product of the above functions: 
 

    1 2 1 1 2 2 1 2 1 2F (z ,z ) F (z ) F (z ) B (z ,z ) A (z ,z )                                 (19) 
 

where   1 2 1 1 2 2B (z ,z ) B (z ) B (z )  and   1 2 1 1 2 2A (z ,z ) A (z ) A (z ) .                        
An important remark here is that the derived frequency transformation is separable, as shows 
relation (19). Separability is a very desirable property of the 2D filter functions. However, 
the designed 2D oriented filters may not preserve this useful property. 
Let 1B , 2B , 1A , 2A  be the coefficient vectors corresponding to 1 1B (z ) , 2 2B (z ) , 1 1A (z ) , 

2 2A (z ) , identified from (17), (18) and B , A the 3 3  matrices corresponding to  1 2B (z ,z ) , 

 1 2A (z ,z ) . The matrices B  and A  of size 3 3  result as:   T
1 2B B B ,   T

1 2A A A , 
where the upper index T denotes transposition and the symbol   outer product of vectors. 
The frequency transformation  1 2z F (z ,z )  can be finally expressed in the matrix form: 
 

 


  


        
       

T1 1
1 1 2 2

1 2 T1 1
1 1 2 2

z 1 z z 1 z
z F (z ,z )

z 1 z z 1 z

B

A
                                 (20) 

 
where   is matrix/vector product. Throughout the chapter we will use the term template, 
common in the field of cellular neural networks, referring to the coefficient matrices 
corresponding to the numerator and denominator of a 2D filter transfer function 1 2H(z ,z ) . 
We will use mainly odd-sized templates (e.g. 3 3 , 5 5 ) which correspond to even order 
filters and allow for using both positive and negative powers of 1z  and 2z . 
Design example: 
For an orientation angle    7  we have  sin 0.43389 ,  cos 0.90097  and we obtain: 
 

 


  


       
   

       

1 1
1 21 1 2 2

1 2 1 1
1 1 2 2 1 2

B (z ,z )(0.6414 z 1.8494 1.5092 z ) (0.4237 z 1.3506 2.2257 z )z F (z ,z )
(1.5092 z 1.8494 0.6414 z ) (2.2257 z 1.3506 0.4237 z ) A (z ,z )

(21) 
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The numerator  1 2B (z ,z )  and denominator  1 2A (z ,z )  correspond to the 3 3  templates: 
 

 

   
       
      

0.271787 0.783643 0.639486 3.358945 4.116139 1.427583
0.866302 2.497802 2.038312 2.038312 2.497802 0.866302
1.427583 4.116139 3.358945 0.639486 0.783643 0.271787

B A       (22) 

 
It is interesting to remark that matrix B  can be obtained from matrix A  by flipping 
successively the rows and columns of the matrix; so the matrix B  is the matrix A  rotated 

by 0180 . The matrices have no symmetry, as the transfer function must result complex. 

 
3.2 Oriented Filter Design Using an 1D Prototype 
This section presents the design of an oriented filter based on an imposed 1D prototype. Let 
us consider a second-order digital filter with the transfer function in general form (3). Since 
we have found in the previous section the complex frequency transformation which leads to 
a 2D oriented filter from any 1D prototype transfer function in variable z: 
 

   1 2 1 2 1 2z F (z ,z ) B (z ,z ) A (z ,z )                                            (23) 
 

we only have to make the above substitution in 2H (z)  given in (3) and we obtain the 
transfer function 1 2H (z ,z )  of the desired oriented filter: 
 

   


   

 


 

2 2
2 1 2 1 1 2 1 2 0 1 2

1 2 2 2
1 2 1 1 2 1 2 0 1 2

b B (z ,z ) b A (z ,z )B (z ,z ) b A (z ,z )
H (z ,z )

B (z ,z ) a A (z ,z )B (z ,z ) a A (z ,z )
                       (24) 

 
For a chosen prototype of higher order, we get a similar rational function in powers of 

 1 2A (z ,z )  and  1 2B (z ,z ) . Since the 2D transfer function (24) can be also described in terms 
of templates B, A corresponding to its numerator and denominator, we have equivalently: 
 

                           2 1 0 1 0b b b a aB B B A B A A A B B A B A A      (25) 
 

where   denotes two-dimensional convolution. The templates A  and B  result of size 
5 5 . The 2D oriented filter transfer function can be written generally in the matrix form: 

 
         T T

1 2 1 2 1 2H (z ,z ) Z B Z Z A Z                                         (26) 
 

similar to expression (20), where: 
 

           
2 1 2 2 1 2

1 1 1 1 1 2 2 2 2 2z z 1 z z ,  z z 1 z zZ Z                        (27)                 

 
Generally, the 2D filter described by the templates B and A given in (25) is not strictly 
separable. However, the numerator and denominator of its transfer function are sums of 

 

separable terms. Since matrix convolution and outer product of vectors are commutative 
operations, using (25) we can express for instance the term: 
 

                         TT T T T
1 2 1 2 1 1 2 2 1 1 2 2A B A A B B A B B B A B A B       (28) 

 
which is the outer product of two 1 5  vectors.   
Design example. Next we design an oriented filter with specified parameters. We choose a 
very selective low-pass second-order digital filter. Let us consider an elliptic digital filter 
with parameters: pass-band ripple pR 0.1 dB, stop-band attenuation sR 40 dB and very 
low passband-edge frequency  p 0.02  (1.0 is half the sampling frequency). The transfer 
function in z for this filter is: 
 

          2 2
pH (z) 0.012277 z 0.012525 z 0.012277 z 1.850147 z 0.862316          (29) 

 
The filter orientation angle is chosen    7 . Following the procedure described above the 
transfer function  1 2H (z ,z )  results. Fig.2(a) shows the frequency response magnitude. As 
can be noticed, besides its central portion which looks correct, the filter also features some 
undesired portions located near the margins of the frequency plane. Also the characteristic 
tends to be distorted from the longitudinal axis near the frequency plane corners. 
These errors are due to the approximation errors of the functions 1 1f (s ) , 2 2f (s )  near the ends 
of the frequency range and the distortions caused by the bilinear transform. In principle, if 
Padé approximations of higher order are used for 1 1f (s )  and 2 2f (s ) , the errors will be 
reduced, but the price paid is an increased filter complexity. 
The designed filter from Fig.2(a) cannot be used in this form, since it introduces large errors. 
However, a satisfactory oriented filter can be obtained by applying an additional wide-band 
low-pass filter which eliminates the distorted portions of the frequency characteristic. Such a 
“window” filter may be a maximally-flat circular filter, shown in Fig.2(b) and fully designed 
in (Matei & Matei, 2009). Applying it we get the corrected directional filter whose frequency 
response and contour plot are given in Fig.2 (c) and (d). 
A good oriented filter may be obtained as well using a Chebyshev-Padé approximation of 
the same order. For comparison, we will design again a filter with    7 . Using MAPLE 

we get the following approximation for   1 1 1f (s ) exp s cos( /7)  for   [ 2 , 2 ] :  
 

            1 1 0 0 0 0 0 0f (s ) 1.355 T(0,s ) 1.823 T(1,s ) 0.56 T(2,s ) T(0,s ) 1.184 T(1,s ) 0.256 T(2,s ) (30) 
 

where 0T(n,s )  is a Chebyshev polynomial of order n and     0s (1 2 ) s 0.22727 s . 
Substituting the expressions of the Chebyshev polynomials into (30), we get immediately: 
 

           2 2
1 1 1 1 1 1f (s ) 1.0714 0.55723 s 0.77598 s 1 0.362 s 0.035613 s               (31) 
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The numerator  1 2B (z ,z )  and denominator  1 2A (z ,z )  correspond to the 3 3  templates: 
 

 

   
       
      

0.271787 0.783643 0.639486 3.358945 4.116139 1.427583
0.866302 2.497802 2.038312 2.038312 2.497802 0.866302
1.427583 4.116139 3.358945 0.639486 0.783643 0.271787

B A       (22) 

 
It is interesting to remark that matrix B  can be obtained from matrix A  by flipping 
successively the rows and columns of the matrix; so the matrix B  is the matrix A  rotated 

by 0180 . The matrices have no symmetry, as the transfer function must result complex. 

 
3.2 Oriented Filter Design Using an 1D Prototype 
This section presents the design of an oriented filter based on an imposed 1D prototype. Let 
us consider a second-order digital filter with the transfer function in general form (3). Since 
we have found in the previous section the complex frequency transformation which leads to 
a 2D oriented filter from any 1D prototype transfer function in variable z: 
 

   1 2 1 2 1 2z F (z ,z ) B (z ,z ) A (z ,z )                                            (23) 
 

we only have to make the above substitution in 2H (z)  given in (3) and we obtain the 
transfer function 1 2H (z ,z )  of the desired oriented filter: 
 

   


   

 


 

2 2
2 1 2 1 1 2 1 2 0 1 2

1 2 2 2
1 2 1 1 2 1 2 0 1 2

b B (z ,z ) b A (z ,z )B (z ,z ) b A (z ,z )
H (z ,z )

B (z ,z ) a A (z ,z )B (z ,z ) a A (z ,z )
                       (24) 

 
For a chosen prototype of higher order, we get a similar rational function in powers of 

 1 2A (z ,z )  and  1 2B (z ,z ) . Since the 2D transfer function (24) can be also described in terms 
of templates B, A corresponding to its numerator and denominator, we have equivalently: 
 

                           2 1 0 1 0b b b a aB B B A B A A A B B A B A A      (25) 
 

where   denotes two-dimensional convolution. The templates A  and B  result of size 
5 5 . The 2D oriented filter transfer function can be written generally in the matrix form: 

 
         T T

1 2 1 2 1 2H (z ,z ) Z B Z Z A Z                                         (26) 
 

similar to expression (20), where: 
 

           
2 1 2 2 1 2

1 1 1 1 1 2 2 2 2 2z z 1 z z ,  z z 1 z zZ Z                        (27)                 

 
Generally, the 2D filter described by the templates B and A given in (25) is not strictly 
separable. However, the numerator and denominator of its transfer function are sums of 

 

separable terms. Since matrix convolution and outer product of vectors are commutative 
operations, using (25) we can express for instance the term: 
 

                         TT T T T
1 2 1 2 1 1 2 2 1 1 2 2A B A A B B A B B B A B A B       (28) 

 
which is the outer product of two 1 5  vectors.   
Design example. Next we design an oriented filter with specified parameters. We choose a 
very selective low-pass second-order digital filter. Let us consider an elliptic digital filter 
with parameters: pass-band ripple pR 0.1 dB, stop-band attenuation sR 40 dB and very 
low passband-edge frequency  p 0.02  (1.0 is half the sampling frequency). The transfer 
function in z for this filter is: 
 

          2 2
pH (z) 0.012277 z 0.012525 z 0.012277 z 1.850147 z 0.862316          (29) 

 
The filter orientation angle is chosen    7 . Following the procedure described above the 
transfer function  1 2H (z ,z )  results. Fig.2(a) shows the frequency response magnitude. As 
can be noticed, besides its central portion which looks correct, the filter also features some 
undesired portions located near the margins of the frequency plane. Also the characteristic 
tends to be distorted from the longitudinal axis near the frequency plane corners. 
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However, a satisfactory oriented filter can be obtained by applying an additional wide-band 
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we get the following approximation for   1 1 1f (s ) exp s cos( /7)  for   [ 2 , 2 ] :  
 

            1 1 0 0 0 0 0 0f (s ) 1.355 T(0,s ) 1.823 T(1,s ) 0.56 T(2,s ) T(0,s ) 1.184 T(1,s ) 0.256 T(2,s ) (30) 
 

where 0T(n,s )  is a Chebyshev polynomial of order n and     0s (1 2 ) s 0.22727 s . 
Substituting the expressions of the Chebyshev polynomials into (30), we get immediately: 
 

           2 2
1 1 1 1 1 1f (s ) 1.0714 0.55723 s 0.77598 s 1 0.362 s 0.035613 s               (31) 
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   (a)   (b)    (c) (d) 

Fig. 2. (a) Uncorrected frequency response of the oriented filter; (b) circular window filter; 
(c) corrected filter frequency response; (d) contour plot 
 
As before, in order to obtain a discrete approximation of 1 1f (s ) , we use the bilinear 
transform and replace   1 1 1s 2(z 1) (z 1)  in (31); we obtain the rational function: 
 

             1 1
1 1 1 1 1 1 1 1 1 1F (z ) B (z ) A (z ) 0.1559 z 0.8874 1.4555 z 1.0885 z 1 0.244 z    (32) 

 
Similarly we get for   2 2 2f (s ) exp s sin( /7) : 
 

           2 2
2 2 2 2 2 2f (s ) 1 0.224155 s 0.015953 s 1 0.208336 s 0.013297 s                  (33) 

             1 1
2 2 2 2 2 2 2 2 2 2F (z ) B (z ) A (z ) 0.3259 z 0.9906 0.7994 z 0.7762 z 1 0.3361 z     (34) 

 
We finally obtained the desired separable complex frequency transformation expressed as: 
 

  1 2 1 1 2 2z F (z ,z ) F (z ) F (z )                                                    (35) 
 

We denote 1B , 2B , 1A , 2A  the coefficient vectors corresponding to the numerators and 
denominators in (32) and (34). For instance we get from (32): 1 [0.1559 0.8874 1.4555]B . 
The matrices B , A  result as shown in section 3.1.  
Design example 
For comparison we have used the same prototype filter given by (29). The frequency 
response  1 2H (z ,z )  results using (24); its magnitude from two views is shown in Fig.3(a), 
(b) and shows less parasitic portions as compared to the filter in Fig.2(a). Applying the same 
circular window filter, the characteristic is improved, as shown in Fig.3 (c),  
The only drawback of the Chebyshev-Padé method is that, unlike Padé, cannot yield literal 
coefficient expressions in   as in (17), (18). Therefore, for each specified angle, the complex 
frequency transform  1 2z F (z ,z )  has to be calculated numerically. 
The stability properties of this class of 2D IIR filters have still to be investigated. However, 
according to a theorem (Harn & Shenoi, 1986), if H(Z)  is a stable 1D recursive filter and 

  1 2 1 1 2 2Z F (z ,z ) F (z ) F (z ) , where 1 1F (z )  and 2 2F (z )  are two stable DST (digital spectral 

transformation) functions, then  1 1 2 2H F (z ) F (z )  is also stable in the 1 2(z ,z )  plane. The 
problem reduces to studying the stability of functions 1 1F (z ) , 2 2F (z )  of the form (17), (18). 

 

Here we approached the design of selective filters with a directional frequency response, but 
the method is more general and can be applied also to other types of prototype filters. 
 

   
(a) (b) (c) 

Fig. 3. (a), (b) Original oriented filter magnitude from two angles; (c) Oriented filter 
magnitude after applying the circular window filter 

 
4. Wedge-Shaped Filters 

Here we approach the design of a class of wedge filters in the 2D frequency domain, also 
treated in (Matei, 2009, a). We consider a general case of a wedge-shaped filter with a given 
orientation of its longitudinal axis. For design a maximally-flat 1D prototype filter will be 
used. We approach here only zero-phase filters, often preferred in image filtering due to the 
absence of phase distortions. Two ideal wedge filters in the frequency plane are shown in 
Fig.4. The filter in Fig.4 (a) has its frequency response along the axis  2 . The angle 

 AOB  will be referred to as aperture angle. In Fig.4 (b) a more general wedge filter is 
shown,  with aperture angle  BOD , oriented along an axis CC' , forming an angle 

 AOC  with frequency axis 2O . 
The Bamberger directional filter bank (Bamberger & Smith, 1992) is an angularly oriented 
image decomposition that splits the 2D frequency plane into wedge-shape channels with N 
= 2, 4, 6, and 8 sub-bands (channels). Each sub-band captures spatial detail along a specific 
orientation. In Fig.5 the frequency band partitions are shown for N = 8. 
 

  
Fig. 4. Ideal wedge filters: (a) along the axis 2 ; (b) 
oriented at an angle   

Fig. 5. 8-band partitions of the  
frequency plane 
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4.1 Wedge Filter Design Using Frequency Transformations 
Next we present a design method which leads to 2D zero-phase oriented filters from 1D 
prototypes. Let us consider a 1D IIR zero-phase low-pass filter frequency response: 
 

            2 4 2 4
p 0 1 2 1 2H ( ) b b b 1 a a                                        (36) 

 
where usually  0 pb H (0) 1 , obtained as in section 2, with general expression (8). A wedge 
filter along frequency axis 2  can be obtained using the 1D to 2D frequency transformation: 
 

     1 2 1 2f( , ) a     (for  2 0 )                                       (37) 
 

We denoted  a 1 tg( 2) , where   is the aperture angle of the wedge filter, as defined in 
Fig.4. Replacing in (36)   by the ratio  1 2a , we get the frequency response in 1 , 2 : 
 

                 4 2 2 2 4 4 4 2 2 2 4 4
1 2 0 2 1 1 2 2 1 2 1 1 2 2 1H( , ) b b a b a a a a a                       (38) 

 
At this point we map  1 2H( , )  into the complex plane 1 2(s ,s ) , where  1 1s j ,  2 2s j . 

Since   2 2
1 1s  and    2 2

2 2s  we get the function S 1 2H (s ,s ) : 
 

       4 2 2 2 4 4 4 2 2 2 4 4
S 1 2 0 2 1 1 2 2 1 2 1 1 2 2 1H (s ,s ) b s b a s s b a s s a a s s a a s                           (39) 

 
A little more difficult task is now to find a mapping of S 1 2H (s ,s )  into the complex plane 
( 1z , 2z ). This can be achieved either using the forward or backward Euler approximations, 
or otherwise the bilinear transform, which gives better accuracy. The bilinear transform for 

1s and 2s  in the complex plane 1 2(s ,s )  has the form: 
 

      1 1 1s 2 z 1 z 1                2 2 2s 2 z 1 z 1                                (40)     
 

Substituting 1s , 2s  in (39), we find after some algebra a function in 1z , 2z  in matrix form: 
 

       T T
1 2 1 2 1 2F(z ,z ) Z B Z Z A Z                                           (41) 

 
where 1Z  and 2Z  are the vectors given by (27) and   denotes matrix/vector product. The 
filter templates B and A can be written as a sum of three separable matrices: 
 

T 2 T 4 T
0 1 2

T 2 T 4 T
1 2

b b a b a

a a a a

        

       
1 2 3 3 2 1

1 2 3 3 2 1

B M M M M M M
A M M M M M M

                              (42) 

 
where 1M , 2M  and 3M  are row vectors:   1 4 6 4 11M ,    1 4 6 4 12M , 

  1 0 2 0 13M  and the operator   denotes outer product of vectors.  

 

In a more general case when the wedge filter axis has an orientation specified by an angle   
(with respect to the axis 2 ), the oriented wedge filter may be obtained by rotating the axes 
of the plane  1 2( , )  with an angle  . The rotation is defined by the linear transformation 
(12). In this case the 1D to 2D frequency transformation can be written as: 
 

               1 2 1 2 1 2f ( , ) a tg tg                                      (43) 

 
Using the expression above and the bilinear transform, we finally get a mapping of the form: 
 

   02 2 T 90 T
1 2 1 2 1 2F(z ,z ) a         z M z z M z                                    (44) 

 
where 1 1

1 1 1 2 2 2z 1 z ,  z 1 z        z z  and M  is the 3 3  matrix: 

 



     
 

          
 

      

2 2 2

2 2 2

2 2 2

(tg -1) 2(tg 1) (tg 1)

2(tg 1) 4(tg 1) 2(tg 1)

(tg 1) 2(tg 1) (tg -1)

M                                 (45) 

 
and 

090M  is the matrix M  rotated by 090 . Applying this frequency transformation directly 
to the 1D prototype (36), we get the 2D wedge filter transfer function in 1z , 2z : 
 

         T T
1 2 1 2 1 2H (z ,z ) Z B Z Z A Z                                        (46) 

 
where the 5 5  matrices A  and B  have the expressions: 
 

           
0 090 2 90 4

0 1 2b ( ) b a ( ) b a ( )B M M M M M M                              (47) 

           
0 090 2 90 4

1 2( ) a a ( ) a a ( )A M M M M M M                              (48) 
 

and Z1 and Z2 are the vectors given in (27). Therefore the transfer function  1 2H (z ,z )  in (46) 
corresponds to a wedge filter with an aperture angle   2 arctg(1/a)  and whose 
longitudinal axis is tilted about the 2  axis in the frequency plane with an angle  . 
Even if this method is straightforward and easy to apply once found the 1D prototype filter, 
the designed 2D filter will present noticeable distortions towards the limits of the frequency 
plane as compared to the ideal frequency response (38). This is mainly due to the frequency 
warping effect introduced by the bilinear transform, expressed by the continuous-time to 
discrete-time frequency mapping:  
 

    a(2 T) arctg T 2                                                       (49) 
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( 1z , 2z ). This can be achieved either using the forward or backward Euler approximations, 
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In a more general case when the wedge filter axis has an orientation specified by an angle   
(with respect to the axis 2 ), the oriented wedge filter may be obtained by rotating the axes 
of the plane  1 2( , )  with an angle  . The rotation is defined by the linear transformation 
(12). In this case the 1D to 2D frequency transformation can be written as: 
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and 

090M  is the matrix M  rotated by 090 . Applying this frequency transformation directly 
to the 1D prototype (36), we get the 2D wedge filter transfer function in 1z , 2z : 
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and Z1 and Z2 are the vectors given in (27). Therefore the transfer function  1 2H (z ,z )  in (46) 
corresponds to a wedge filter with an aperture angle   2 arctg(1/a)  and whose 
longitudinal axis is tilted about the 2  axis in the frequency plane with an angle  . 
Even if this method is straightforward and easy to apply once found the 1D prototype filter, 
the designed 2D filter will present noticeable distortions towards the limits of the frequency 
plane as compared to the ideal frequency response (38). This is mainly due to the frequency 
warping effect introduced by the bilinear transform, expressed by the continuous-time to 
discrete-time frequency mapping:  
 

    a(2 T) arctg T 2                                                       (49) 
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where   is the frequency of the discrete-time filter and a  the frequency of the continuous-
time filter. In order to correct this distortion we next apply a pre-warping, using the inverse 
of mapping (49). For our purposes we can take T 1  and we substitute    1 12tg 2 , 

   2 22tg 2  in (43). Since these are nonlinear mappings, a polynomial or rational 
approximation would be more suitable. Using a Chebyshev-Padé approximation we get: 
 

             2 2tg 2 0.5 0.008439 1 0.1 g( )                               (50) 

 
very accurate on a frequency range close to  [ , ] . Using (43) we obtain the frequency 
transformation which includes frequency pre-warping for 1  and 2 : 
 

                P 1 2 1 2 1 2f ( , ) a tg( 2) tg( 2) tg tg( 2) tg tg( 2)               (51) 

 
Substituting in (51) tg( 2)  by the rational approximation g( )  we get a rational expression 
in 1  and 2  for the frequency transformation   P 1 2f ( , ) . Then as previously we 
map   P 1 2f ( , )  into the complex plane 1 2(s ,s )  and finally we get using bilinear transform 

the frequency mapping written again in matrix form:  2F : ,  1 2F(z ,z )       
 

        T T
1 2 1 P 2 1 P 2F(z ,z ) Z B Z Z A Z                                     (52) 

 
The 4 4  templates corresponding to the numerator and denominator have the form: 
 

        
0 090 90

p 1 1 p 1 1tg           tgB M M A M M                                     (53) 
 

where 
090

1M  is the matrix 1M  rotated clock-wise by 090 , numerically given by: 
 

 
           

1

0.559283 1.081434 0.559283
1 1

0.915190 1.769619 0.915190
1 1

0.559283 1.081434 0.559283
M                                 (54) 

 
The elements of 1M  result from combinations of the coefficients occurring in the expression 
of g( )  in (50). Finally we obtain the 1D to 2D frequency transformation in the matrix form: 
 

          2 2 T T
1 2 1 2 1 2F(z ,z ) a z B z z A z                                    (55) 

 
where the matrices   p pB B B ,   p pA A A  resulted by convolution are of size 7 7 . 
We can apply this frequency transformation directly to the 1D prototype function (36) and 
we obtain the 2D wedge filter transfer function in 1z  and 2z : 

 

         T T
W 1 2 1 2 1 2H (z ,z ) W WZ B Z Z A Z                                      (56) 

 
where 1Z  and 2Z  are row vectors:  N N 1

1 1 1 1 [z z z 1]Z ,  N N 1
2 2 2 2[z z z 1] Z  

with N 12 ; the 13 13  matrices WA  and WB  are: 
 

      2 4
0 1 2b ( ) b a ( ) b a ( )WB A A A B B B  ,         2 4

1 2a a ( ) a a ( )WA A A A B B B     (57) 
 

As an important remark, even if the filter templates result relatively large, this is the price 
paid for ensuring a good linearity of the filter shape in the frequency plane. The frequency 
pre-warping has increased the filter order. However, the filter large-size templates result as 
a convolution of small size matrices ( 3 3 , 5 5 ) and can be considered partially separable. 
At least the numerator of the prototype (36) may have real roots, so it can be factorized, 
which implies convolution of smaller size matrices. Let us consider the maximally-flat zero-
phase 1D IIR prototype filter shown in Fig.6 (a), with the transfer function: 
 

           2 4 2 4
pH (s) 0.887175 0.269975 s 0.018905 s 1 0.600346 s 5.332057 s           (58) 

 
Using this prototype, we designed a wedge filter with an aperture angle   0.2  and 
orientation angle    5 . For these values we get  a tg( 2 )=0.3249 , tg = 0.7265 . The 
frequency response and contour plot are shown in Fig.6 (b) and (c).   
 

 
 

                       (a)                          (b)                       (c)  
Fig. 6. Oriented flat-top wedge filter with   0.2  and   0.2 : (a) 1D IIR maximally-flat 
prototype magnitude; (b) frequency response; (c) contour plot 

 
4.2 Design Method Using Numerical Approximation 
The second design method for zero-phase wedge-shaped filters starts again from a zero-
phase 1D prototype filter of the general form similar to (36). We will use again the 1D to 2D 
frequency mapping (43). Since (36) is a rational function of 2 , the design method will be 
based upon finding the discrete approximation of the function  
 

                  
2 22 2

1 2 1 2 1 2 1 2F ( , ) f ( , ) a tg tg                          (59) 
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where   is the frequency of the discrete-time filter and a  the frequency of the continuous-
time filter. In order to correct this distortion we next apply a pre-warping, using the inverse 
of mapping (49). For our purposes we can take T 1  and we substitute    1 12tg 2 , 

   2 22tg 2  in (43). Since these are nonlinear mappings, a polynomial or rational 
approximation would be more suitable. Using a Chebyshev-Padé approximation we get: 
 

             2 2tg 2 0.5 0.008439 1 0.1 g( )                               (50) 

 
very accurate on a frequency range close to  [ , ] . Using (43) we obtain the frequency 
transformation which includes frequency pre-warping for 1  and 2 : 
 

                P 1 2 1 2 1 2f ( , ) a tg( 2) tg( 2) tg tg( 2) tg tg( 2)               (51) 

 
Substituting in (51) tg( 2)  by the rational approximation g( )  we get a rational expression 
in 1  and 2  for the frequency transformation   P 1 2f ( , ) . Then as previously we 
map   P 1 2f ( , )  into the complex plane 1 2(s ,s )  and finally we get using bilinear transform 

the frequency mapping written again in matrix form:  2F : ,  1 2F(z ,z )       
 

        T T
1 2 1 P 2 1 P 2F(z ,z ) Z B Z Z A Z                                     (52) 

 
The 4 4  templates corresponding to the numerator and denominator have the form: 
 

        
0 090 90

p 1 1 p 1 1tg           tgB M M A M M                                     (53) 
 

where 
090

1M  is the matrix 1M  rotated clock-wise by 090 , numerically given by: 
 

 
           

1

0.559283 1.081434 0.559283
1 1

0.915190 1.769619 0.915190
1 1

0.559283 1.081434 0.559283
M                                 (54) 

 
The elements of 1M  result from combinations of the coefficients occurring in the expression 
of g( )  in (50). Finally we obtain the 1D to 2D frequency transformation in the matrix form: 
 

          2 2 T T
1 2 1 2 1 2F(z ,z ) a z B z z A z                                    (55) 

 
where the matrices   p pB B B ,   p pA A A  resulted by convolution are of size 7 7 . 
We can apply this frequency transformation directly to the 1D prototype function (36) and 
we obtain the 2D wedge filter transfer function in 1z  and 2z : 

 

         T T
W 1 2 1 2 1 2H (z ,z ) W WZ B Z Z A Z                                      (56) 

 
where 1Z  and 2Z  are row vectors:  N N 1

1 1 1 1 [z z z 1]Z ,  N N 1
2 2 2 2[z z z 1] Z  

with N 12 ; the 13 13  matrices WA  and WB  are: 
 

      2 4
0 1 2b ( ) b a ( ) b a ( )WB A A A B B B  ,         2 4

1 2a a ( ) a a ( )WA A A A B B B     (57) 
 

As an important remark, even if the filter templates result relatively large, this is the price 
paid for ensuring a good linearity of the filter shape in the frequency plane. The frequency 
pre-warping has increased the filter order. However, the filter large-size templates result as 
a convolution of small size matrices ( 3 3 , 5 5 ) and can be considered partially separable. 
At least the numerator of the prototype (36) may have real roots, so it can be factorized, 
which implies convolution of smaller size matrices. Let us consider the maximally-flat zero-
phase 1D IIR prototype filter shown in Fig.6 (a), with the transfer function: 
 

           2 4 2 4
pH (s) 0.887175 0.269975 s 0.018905 s 1 0.600346 s 5.332057 s           (58) 

 
Using this prototype, we designed a wedge filter with an aperture angle   0.2  and 
orientation angle    5 . For these values we get  a tg( 2 )=0.3249 , tg = 0.7265 . The 
frequency response and contour plot are shown in Fig.6 (b) and (c).   
 

 
 

                       (a)                          (b)                       (c)  
Fig. 6. Oriented flat-top wedge filter with   0.2  and   0.2 : (a) 1D IIR maximally-flat 
prototype magnitude; (b) frequency response; (c) contour plot 

 
4.2 Design Method Using Numerical Approximation 
The second design method for zero-phase wedge-shaped filters starts again from a zero-
phase 1D prototype filter of the general form similar to (36). We will use again the 1D to 2D 
frequency mapping (43). Since (36) is a rational function of 2 , the design method will be 
based upon finding the discrete approximation of the function  
 

                  
2 22 2

1 2 1 2 1 2 1 2F ( , ) f ( , ) a tg tg                          (59) 
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This approximation will be derived indirectly, using the change of variables: 1 1arccosx  , 

2 2arccosx   and the function   1 2F ( , )  will be mapped into a function  1 2G (x ,x ) . The 
next step is to find a two-variable Taylor series expansion of the function  1 2G (x ,x ) . Using a 
symbolic calculation software like MAPLE, we easily determine this series expansion in the 
variables 1x , 2x . Then we return to the former variables by substituting back  1 1x cos , 

 2 2x cos  in  1 2G (x ,x ) . Thus we obtain an approximation of   1 2F ( , )  in powers of 
1cos , 2cos . Using trigonometric identities, we finally express   1 2F ( , )  as: 

 


 

       
N N

1 2 mn 1 2
m N n N

F ( , ) a cos(m n )                                        (60) 

 
where N is chosen to ensure a desired precision (usually N 2 ). The coefficients mna  
depend on the orientation angle   and they are polynomial expressions in the variable tg .  
Let us design a wedge filter with the same specifications from section 4.1, i.e. the prototype 
(58), with the parameters:  a tg( 2 )=0.3249 , tg = 0.7265 . The proposed method yields: 
 

              

                
        

2
1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

F ( , ) a [0.195736 0.132213 cos( ) 0.212134 cos( ) 0.155057 (cos( )
cos( )) 0.027075 (cos(2 ) cos(2 )) 0.042024 (cos( 2 )
cos( 2 )) 0.050075cos(2 ) 0.124584cos(2 ) 0.0147        1 2 1 242 (cos(2 2 ) cos(2 2 ))]

  (61) 

 
which corresponds to the 5 5  template: 
 

    
     
   
 
    
     

2

0.0073 0.0210 0.0623 0.0210 0.0073
0.0135 0.0775 0.1060 0.0775 0.0135
0.0250 0.0661 0.1957 0.0661 0.0250a
0.0135 0.0775 0.1060 0.0775 0.0135
0.0073 0.0210 0.0623 0.0210 0.0073

W                              (62) 

 
found after identifying coefficients of the 2D Z transform corresponding to (61). Once 
obtained the 1D to 2D frequency mapping of the form:    2

1 2F ( , )  given by the 
expression (61), the next design step is straightforward and consists simply in substituting in 

pH ( )  from (36)  2  with   1 2F ( , ) . The templates B and A  of the wedge filter result 
according to the numerator and denominator of pH ( )  as: 
 

            0 1 2 1 2b b b a ab bB E W W W A E W W W                      (63) 
 

where * stands for matrix convolution and E is a 9 9  matrix with zero elements and the 
central element 1. The 9 9  matrix bW  is obtained by bordering the 5 5  matrix W with 
zeros in order to be summed with matrices E and W W .  

 

An advantage of the second design method is that it avoids the use of the bilinear transform, 
which is known to introduce distortions unless a frequency pre-warping is applied, as in the 
previous section. The pre-warping increases the filter complexity, as shown. As a general 
remark, the second design approach is somewhat simpler than the first but requires the use 
of bivariate Taylor series expansion for a given orientation angle  .  

 
4.3 Fan Filters Design 
Although there exist design methods for FIR or IIR fan filters (Kayran & King, 1983), they can 
be derived as well using the proposed method. We consider two types of fan filters specified 
in the plane  1 2( , )  as in Fig.7 (a), (b). The filter in Fig.7 (a) can be described  ideally as: 
 

     


2 1
F 1 2

1,
H ( , )

0, otherwise
                                                  (64) 

 
This fan filter is a particular case of a wedge filter with the aperture angle    2  and 
orientation   0 , therefore a 1  and tg 0  ; the frequency transformation (43) reduces to 
the simple expression      1 2 1 2f ( , ) . In this particular case the template W results: 
 

  
   
  
 

  
   

0.0072 0.0413 0.1038 0.0413 0.0072
0.0134 0.1056 0.1746 0.1056 0.0134
0.0281 0.1474 0.2975 0.1474 0.0281
0.0134 0.1056 0.1746 0.1056 0.0134
0.0072 0.0413 0.1038 0.0413 0.0072

W                                (65) 

 
The frequency response of a fan filter of this type, using the above specifications and the 
prototype given in (58), is shown in Fig.7 (c). We notice that it preserves the 1D prototype 
maximally-flat characteristics in the pass-band. 
For the second fan filter type in Fig.7 (b) we have the parameters:    2  and    4 , 
therefore a 1  and  tg 1 ; in this case the frequency transformation (43) simplifies to: 
 

        1 2 1 2 1 2f ( , ) ( ) ( )                                       (66) 
 

In this particular case the template W results as: 
 

    
     
 
 
    
     

0.0071 0.0126 0.0383 0.0126 0.0071
0.0126 0.0681 0.0131 0.0681 0.0126
0.0383 0.0131 0.0760 0.0131 0.0383
0.0126 0.0681 0.0131 0.0681 0.0126
0.0071 0.0126 0.0383 0.0126 0.0071

W                             (67) 

 
The filter templates result again using relations (63). 
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This approximation will be derived indirectly, using the change of variables: 1 1arccosx  , 

2 2arccosx   and the function   1 2F ( , )  will be mapped into a function  1 2G (x ,x ) . The 
next step is to find a two-variable Taylor series expansion of the function  1 2G (x ,x ) . Using a 
symbolic calculation software like MAPLE, we easily determine this series expansion in the 
variables 1x , 2x . Then we return to the former variables by substituting back  1 1x cos , 

 2 2x cos  in  1 2G (x ,x ) . Thus we obtain an approximation of   1 2F ( , )  in powers of 
1cos , 2cos . Using trigonometric identities, we finally express   1 2F ( , )  as: 

 


 

       
N N

1 2 mn 1 2
m N n N

F ( , ) a cos(m n )                                        (60) 

 
where N is chosen to ensure a desired precision (usually N 2 ). The coefficients mna  
depend on the orientation angle   and they are polynomial expressions in the variable tg .  
Let us design a wedge filter with the same specifications from section 4.1, i.e. the prototype 
(58), with the parameters:  a tg( 2 )=0.3249 , tg = 0.7265 . The proposed method yields: 
 

              

                
        

2
1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

F ( , ) a [0.195736 0.132213 cos( ) 0.212134 cos( ) 0.155057 (cos( )
cos( )) 0.027075 (cos(2 ) cos(2 )) 0.042024 (cos( 2 )
cos( 2 )) 0.050075cos(2 ) 0.124584cos(2 ) 0.0147        1 2 1 242 (cos(2 2 ) cos(2 2 ))]

  (61) 

 
which corresponds to the 5 5  template: 
 

    
     
   
 
    
     

2

0.0073 0.0210 0.0623 0.0210 0.0073
0.0135 0.0775 0.1060 0.0775 0.0135
0.0250 0.0661 0.1957 0.0661 0.0250a
0.0135 0.0775 0.1060 0.0775 0.0135
0.0073 0.0210 0.0623 0.0210 0.0073

W                              (62) 

 
found after identifying coefficients of the 2D Z transform corresponding to (61). Once 
obtained the 1D to 2D frequency mapping of the form:    2

1 2F ( , )  given by the 
expression (61), the next design step is straightforward and consists simply in substituting in 

pH ( )  from (36)  2  with   1 2F ( , ) . The templates B and A  of the wedge filter result 
according to the numerator and denominator of pH ( )  as: 
 

            0 1 2 1 2b b b a ab bB E W W W A E W W W                      (63) 
 

where * stands for matrix convolution and E is a 9 9  matrix with zero elements and the 
central element 1. The 9 9  matrix bW  is obtained by bordering the 5 5  matrix W with 
zeros in order to be summed with matrices E and W W .  

 

An advantage of the second design method is that it avoids the use of the bilinear transform, 
which is known to introduce distortions unless a frequency pre-warping is applied, as in the 
previous section. The pre-warping increases the filter complexity, as shown. As a general 
remark, the second design approach is somewhat simpler than the first but requires the use 
of bivariate Taylor series expansion for a given orientation angle  .  

 
4.3 Fan Filters Design 
Although there exist design methods for FIR or IIR fan filters (Kayran & King, 1983), they can 
be derived as well using the proposed method. We consider two types of fan filters specified 
in the plane  1 2( , )  as in Fig.7 (a), (b). The filter in Fig.7 (a) can be described  ideally as: 
 

     


2 1
F 1 2

1,
H ( , )

0, otherwise
                                                  (64) 

 
This fan filter is a particular case of a wedge filter with the aperture angle    2  and 
orientation   0 , therefore a 1  and tg 0  ; the frequency transformation (43) reduces to 
the simple expression      1 2 1 2f ( , ) . In this particular case the template W results: 
 

  
   
  
 

  
   

0.0072 0.0413 0.1038 0.0413 0.0072
0.0134 0.1056 0.1746 0.1056 0.0134
0.0281 0.1474 0.2975 0.1474 0.0281
0.0134 0.1056 0.1746 0.1056 0.0134
0.0072 0.0413 0.1038 0.0413 0.0072

W                                (65) 

 
The frequency response of a fan filter of this type, using the above specifications and the 
prototype given in (58), is shown in Fig.7 (c). We notice that it preserves the 1D prototype 
maximally-flat characteristics in the pass-band. 
For the second fan filter type in Fig.7 (b) we have the parameters:    2  and    4 , 
therefore a 1  and  tg 1 ; in this case the frequency transformation (43) simplifies to: 
 

        1 2 1 2 1 2f ( , ) ( ) ( )                                       (66) 
 

In this particular case the template W results as: 
 

    
     
 
 
    
     

0.0071 0.0126 0.0383 0.0126 0.0071
0.0126 0.0681 0.0131 0.0681 0.0126
0.0383 0.0131 0.0760 0.0131 0.0383
0.0126 0.0681 0.0131 0.0681 0.0126
0.0071 0.0126 0.0383 0.0126 0.0071

W                             (67) 

 
The filter templates result again using relations (63). 
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                   (a)                      (b)                           (c) 

Fig. 7. (a), (b) Two versions of ideal fan filters; (c) fan filter frequency response 

  
5. 2D Filters Designed in Polar Coordinates 

We will approach next a particular class of 2D filters, namely filters whose frequency 
response is symmetric about the origin and has at the same time an angular periodicity. The 
contour plots of their frequency response, resulted as sections with planes parallel with the 
frequency plane, can be defined as closed curves which can be described in terms of a 
variable radius which is a periodic function of the current angle formed with one of the axes. 
Therefore it can be described in polar coordinates by ( )     where   is the angle formed 
by the radius OP with 1 -axis, as shown in Fig.8 (a) for a four-lobe filter. Therefore ( )   is 
a periodic function of the angle   in the range [0,2 ]  . 
The proposed design method is based on a zero-phase prototype whose real-valued transfer 
function can be expressed as a ratio of polynomials in even powers of the frequency  : 
 

M N
2 j 2k

p j k
j 0 k 0

H ( ) b a
 

                                                  (68) 

 
where M N  and N is the filter order. This function may be obtained using a rational 
approximation of a prototype filter magnitude (e.g. Chebyshev, elliptic). The proposed 
design method for this class of 2D filters is based on a frequency transformation of the form: 
 

2F :   , 2
1 2F(z ,z )                                                      (69) 

 
The frequency transformation (69) maps the real frequency axis   onto the complex plane 

1 2(z ,z )  and will be defined by a frequency mapping of the form: 
 

2
1F :   ,                 2 2 2

1 1 2 1 2 1 2F ( , ) ( ) ( , )                                  (70) 
 

1 2( , )    plays the role of a radial compressing function and is initially determined in the 
angle variable   as ( )  . In the frequency plane 1 2( , )   we have:  
 

2 2
1 1 2cos                                                                 (71) 

 

If the radial function ( )   can be expressed in the variable cos , using (71) we obtain by 
substitution the function 1 2( , )   . We will express the function ( )   as a polynomial or a 
ratio of polynomials in the variable cos . For instance, the four-lobe filter with contour plot 
given in Fig.8 (a) corresponds to a function: 
 

 2 4( ) a bcos 4 a b 8bcos 8bcos                                               (72) 
 

plotted in Fig.8 (b) for [0,2 ]  . As 1D prototype we consider a type-2 Chebyshev digital 
filter with the parameters: order N 4 , stopband attenuation sR 40 dB and passband-
edge frequency p 0.5   (1.0 is half the sampling frequency). The transfer function in z  is: 
 

          2 2
pH (z) 0.012277 z 0.012525 z 0.012277 z 1.850147 z 0.862316             (73) 

 
Its magnitude for [ , ]    is shown in Fig.8 (c). Using the Chebyshev-Padé method and a 
symbolic computation software, we determine the real-valued transfer function which 
accurately approximates the magnitude of the digital filter function pH (z) : 
 

   2 4 2 4
a1H (s) 0.9403 0.5756 s 0.0947 s 1 2.067753 s 4.66314 s                         (74) 

 
This method can be applied for any prototype like (73). More generally, the 2D filter in polar 
coordinates can be rotated in the frequency plane with a specified angle 0  about one of the 
frequency axes, e.g. 2O  . For instance, in the case of a four-lobe filter, two opposite lobes 
are oriented along a direction at an angle 0 , and the other two at 0 2   , as in Fig.9 (d). It 
can be shown that the cosine of the current angle   with initial phase 0  can be expressed: 
 

    2 2 2 2 2 2 2
0 0 1 0 2 0 1 2 1 2cos ( ) cos sin 0.5sin 2                                       (75) 

 
A filter with 0 0   is designed in subsection 5.2. For filters with an even number of lobes, as 
shown further, the radial function ( )   is expressed in even powers of cos  or 0cos( )   . 
 

  
                (a)                 (b)   (c)   (d) 
Fig. 8. (a) Contour plot of a four-lobe filter; (b) variation of the periodic function ( )  ;  
(c) maximally-flat low-pass prototype; (d) very selective radial function 
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Fig. 7. (a), (b) Two versions of ideal fan filters; (c) fan filter frequency response 

  
5. 2D Filters Designed in Polar Coordinates 

We will approach next a particular class of 2D filters, namely filters whose frequency 
response is symmetric about the origin and has at the same time an angular periodicity. The 
contour plots of their frequency response, resulted as sections with planes parallel with the 
frequency plane, can be defined as closed curves which can be described in terms of a 
variable radius which is a periodic function of the current angle formed with one of the axes. 
Therefore it can be described in polar coordinates by ( )     where   is the angle formed 
by the radius OP with 1 -axis, as shown in Fig.8 (a) for a four-lobe filter. Therefore ( )   is 
a periodic function of the angle   in the range [0,2 ]  . 
The proposed design method is based on a zero-phase prototype whose real-valued transfer 
function can be expressed as a ratio of polynomials in even powers of the frequency  : 
 

M N
2 j 2k

p j k
j 0 k 0

H ( ) b a
 

                                                  (68) 

 
where M N  and N is the filter order. This function may be obtained using a rational 
approximation of a prototype filter magnitude (e.g. Chebyshev, elliptic). The proposed 
design method for this class of 2D filters is based on a frequency transformation of the form: 
 

2F :   , 2
1 2F(z ,z )                                                      (69) 

 
The frequency transformation (69) maps the real frequency axis   onto the complex plane 

1 2(z ,z )  and will be defined by a frequency mapping of the form: 
 

2
1F :   ,                 2 2 2
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1 2( , )    plays the role of a radial compressing function and is initially determined in the 
angle variable   as ( )  . In the frequency plane 1 2( , )   we have:  
 

2 2
1 1 2cos                                                                 (71) 

 

If the radial function ( )   can be expressed in the variable cos , using (71) we obtain by 
substitution the function 1 2( , )   . We will express the function ( )   as a polynomial or a 
ratio of polynomials in the variable cos . For instance, the four-lobe filter with contour plot 
given in Fig.8 (a) corresponds to a function: 
 

 2 4( ) a bcos 4 a b 8bcos 8bcos                                               (72) 
 

plotted in Fig.8 (b) for [0,2 ]  . As 1D prototype we consider a type-2 Chebyshev digital 
filter with the parameters: order N 4 , stopband attenuation sR 40 dB and passband-
edge frequency p 0.5   (1.0 is half the sampling frequency). The transfer function in z  is: 
 

          2 2
pH (z) 0.012277 z 0.012525 z 0.012277 z 1.850147 z 0.862316             (73) 

 
Its magnitude for [ , ]    is shown in Fig.8 (c). Using the Chebyshev-Padé method and a 
symbolic computation software, we determine the real-valued transfer function which 
accurately approximates the magnitude of the digital filter function pH (z) : 
 

   2 4 2 4
a1H (s) 0.9403 0.5756 s 0.0947 s 1 2.067753 s 4.66314 s                         (74) 

 
This method can be applied for any prototype like (73). More generally, the 2D filter in polar 
coordinates can be rotated in the frequency plane with a specified angle 0  about one of the 
frequency axes, e.g. 2O  . For instance, in the case of a four-lobe filter, two opposite lobes 
are oriented along a direction at an angle 0 , and the other two at 0 2   , as in Fig.9 (d). It 
can be shown that the cosine of the current angle   with initial phase 0  can be expressed: 
 

    2 2 2 2 2 2 2
0 0 1 0 2 0 1 2 1 2cos ( ) cos sin 0.5sin 2                                       (75) 

 
A filter with 0 0   is designed in subsection 5.2. For filters with an even number of lobes, as 
shown further, the radial function ( )   is expressed in even powers of cos  or 0cos( )   . 
 

  
                (a)                 (b)   (c)   (d) 
Fig. 8. (a) Contour plot of a four-lobe filter; (b) variation of the periodic function ( )  ;  
(c) maximally-flat low-pass prototype; (d) very selective radial function 



Digital Filters110

 

Next we approach the design of several types of recursive zero-phase 2D filters belonging to 
this class, namely two-lobe and four-lobe filters, fan filters and diamond-shaped filters. The 
transformation 2

1 2F(z ,z )   and the filter frequency response is calculated in each case. 

 
5.1 Two-Lobe Filter 
A very simple 2D filter belonging to this class is one given by a function ( )   of the form: 
 

2( ) a bcos2 a b 2bcos                                                   (76) 
 

Using (70), (71) and (76) we get the frequency transformation: 
 

   22 2 2 2 2
1 1 2 1 2 1 2F ( , ) (a b) (a b)                                        (77) 

 
Since 2 2

1 1s    and 2 2
2 2s    we get the function 1 1 2F (s ,s )  in the complex plane 1 2(s ,s ) : 

 

   22 2 2 2
1 1 2 1 2 1 2F (s ,s ) s s (a b) s (a b) s                                           (78) 

 
Finally we derive a transfer function of the 2D filter 1 2H(z ,z )  in the complex plane 1 2(z ,z ) . 
This can be achieved if we find a discrete counterpart 1 2R(z ,z )  of the function 1 2( , )   . A 
possible method is to express the function 1 2( , )    in the complex plane 1 2(s ,s )  and then 
find the appropriate mapping to 1 2(z ,z )  using the bilinear transform for the variables 1s , 

2s . Using (40) in (78), we find the frequency transformation in 1z , 2z  in matrix form: 
 

          2 T T
1 2 1 2 1 2 1 2 1 2F(z ,z ) B(z ,z ) A(z ,z ) Z B Z Z A Z                      (79) 

 
with 1Z , 2Z  given in (27). The templates B, A giving the coefficients of 1 2B(z ,z ) , 1 2A(z ,z )  
result as convolutions of 3 3  matrices: 8  1 1B B B ,  1 2A A A , where: 
 

1 0 1 a 2b a 1 2 1
0 4 0 ;    2b 4a 2b ;    2 4 2
1 0 1 a 2b a 1 2 1

     
                
          

1 1 2B A A                               (80) 

 
The parameters a and b from (76) are chosen imposing the minimum and maximum values 
of ( )  , m a b   and M a b  . For instance with m 0.04 , M 4  we get a 2.02 , 
b 1.98 . We next use the maximally-flat filter prototype (74). We substitute the mapping 
(79) into the general prototype (36) and get the desired 2D transfer function:  
 

  
 

2 2
2 1 2 1 1 2 1 2 0 1 2

1 2 1 2 1 2f f2 2
2 1 2 1 1 2 1 2 1 2

b B (z ,z ) b A(z ,z )B(z ,z ) b A (z ,z )H(z ,z ) B (z ,z ) A (z ,z )
a B (z ,z ) a A(z ,z )B(z ,z ) A (z ,z )

    (81) 

 

where the coefficients 0b , 1b , 2b , 1a , 2a  may take the values in (74). Since function (81) can 
be described by the templates fB , fA  corresponding to f 1 2B (z ,z ) , f 1 2A (z ,z ) , we have: 
 

f 2 1 0 f 2 1b b b                 a a                B B B A B A A A B B A B A A            (82) 
 

where   denotes matrix convolution. For our filter, the templates fB  and fA  result of size 
9 9 . In Fig.9 (a) the two-lobe filter frequency response is shown. 

 
5.2 Very Selective Four-Lobe Filter 
The design of a very selective four-lobe filter in polar coordinates was presented in (Matei, 
2009, b) and is briefly reconsidered as follows. Let us consider the radial function: 
 

 rH ( ) 1 p B( ) p 1                                                            (83) 

 
where B( )  is a periodic function; let   B( ) cos(4 ) . We use this function to design a 2D 
filter with four narrow lobes in the frequency plane. Using trigonometric identities, we 
get: 
 

 2 4
rH ( ) 1 1 8p (cos ) 8p (cos )                                                  (84) 

 
plotted for [ , ]    in Fig.8 (d). This periodic function has the period 4    and the 
shape of a “comb” filter. In order to control the shape of this function, we introduce 
another parameter k, such that the radial function ( )   becomes r( ) k H ( )     . We get 
using (70): 
 

   2 4 2 2 4 2 2
1 2 1 1 2 2 1 2F( , ) (2 8p) k( )                                            (85) 

   4 2 2 4 2 2
2 1 2 1 1 2 2 1 2F (s ,s ) s (2 8p)s s s k(s s )                                        (86) 

 

  
(a) (b)          (c)   (d) 

Fig. 9. (a) Frequency response of the 2-lobe filter; (b), (c) frequency response and contour 
plot for a narrow 4-lobe filter; (d) contour plot of a rotated 4-lobe filter 
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Next we approach the design of several types of recursive zero-phase 2D filters belonging to 
this class, namely two-lobe and four-lobe filters, fan filters and diamond-shaped filters. The 
transformation 2

1 2F(z ,z )   and the filter frequency response is calculated in each case. 

 
5.1 Two-Lobe Filter 
A very simple 2D filter belonging to this class is one given by a function ( )   of the form: 
 

2( ) a bcos2 a b 2bcos                                                   (76) 
 

Using (70), (71) and (76) we get the frequency transformation: 
 

   22 2 2 2 2
1 1 2 1 2 1 2F ( , ) (a b) (a b)                                        (77) 

 
Since 2 2

1 1s    and 2 2
2 2s    we get the function 1 1 2F (s ,s )  in the complex plane 1 2(s ,s ) : 

 

   22 2 2 2
1 1 2 1 2 1 2F (s ,s ) s s (a b) s (a b) s                                           (78) 

 
Finally we derive a transfer function of the 2D filter 1 2H(z ,z )  in the complex plane 1 2(z ,z ) . 
This can be achieved if we find a discrete counterpart 1 2R(z ,z )  of the function 1 2( , )   . A 
possible method is to express the function 1 2( , )    in the complex plane 1 2(s ,s )  and then 
find the appropriate mapping to 1 2(z ,z )  using the bilinear transform for the variables 1s , 

2s . Using (40) in (78), we find the frequency transformation in 1z , 2z  in matrix form: 
 

          2 T T
1 2 1 2 1 2 1 2 1 2F(z ,z ) B(z ,z ) A(z ,z ) Z B Z Z A Z                      (79) 

 
with 1Z , 2Z  given in (27). The templates B, A giving the coefficients of 1 2B(z ,z ) , 1 2A(z ,z )  
result as convolutions of 3 3  matrices: 8  1 1B B B ,  1 2A A A , where: 
 

1 0 1 a 2b a 1 2 1
0 4 0 ;    2b 4a 2b ;    2 4 2
1 0 1 a 2b a 1 2 1

     
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The parameters a and b from (76) are chosen imposing the minimum and maximum values 
of ( )  , m a b   and M a b  . For instance with m 0.04 , M 4  we get a 2.02 , 
b 1.98 . We next use the maximally-flat filter prototype (74). We substitute the mapping 
(79) into the general prototype (36) and get the desired 2D transfer function:  
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where the coefficients 0b , 1b , 2b , 1a , 2a  may take the values in (74). Since function (81) can 
be described by the templates fB , fA  corresponding to f 1 2B (z ,z ) , f 1 2A (z ,z ) , we have: 
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where   denotes matrix convolution. For our filter, the templates fB  and fA  result of size 
9 9 . In Fig.9 (a) the two-lobe filter frequency response is shown. 

 
5.2 Very Selective Four-Lobe Filter 
The design of a very selective four-lobe filter in polar coordinates was presented in (Matei, 
2009, b) and is briefly reconsidered as follows. Let us consider the radial function: 
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where B( )  is a periodic function; let   B( ) cos(4 ) . We use this function to design a 2D 
filter with four narrow lobes in the frequency plane. Using trigonometric identities, we 
get: 
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plotted for [ , ]    in Fig.8 (d). This periodic function has the period 4    and the 
shape of a “comb” filter. In order to control the shape of this function, we introduce 
another parameter k, such that the radial function ( )   becomes r( ) k H ( )     . We get 
using (70): 
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(a) (b)          (c)   (d) 

Fig. 9. (a) Frequency response of the 2-lobe filter; (b), (c) frequency response and contour 
plot for a narrow 4-lobe filter; (d) contour plot of a rotated 4-lobe filter 
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As in the previous example we find the transformation of the same form (79), where 1Z  and 

2Z  are the vectors given by (27), and B, A  are the 5 5  matrices : 
 

1 2p 0 4p 2 0 1 2p
0 8 0 8 0

4p 2 0 8p 20 0 4p 28
0 8 0 8 0

1 2p 0 4p 2 0 1 2p

     
 
 
     
 
 
      

B    1 2

1 0 1 1 2 1
k 0 4 0 2 4 2 k

1 0 1 1 2 1

   
            
      

A A A     (87) 

 
Using the prototype (74) we get a transfer function 1 2H(z ,z )  similar to (81) and the templates 
result from (82). The designed filter has the frequency response and contour plot as in Fig. 9 
(b), (c). We remark that the filter is very selective simultaneously along both axes. 
The same procedure can be applied to design a four-lobe filter with a specified inclination 
angle. Using the double bilinear transform (40), the expression (75) for 2

0cos ( )    
corresponds to the following frequency transformation in the complex variables 1z , 2z : 
 

            2 T T
0 1 2 1 2 1 2 1 2 1 2cos ( ) F(z ,z ) B(z ,z ) A(z ,z ) C CZ B Z Z A Z             (88) 

 

where 12 CA A  with 1A  given in (87) and 
 

0 0 0

0 0

0 0 0

1 0.5sin(2 ) 2 cos(2 ) 1 0.5sin(2 )
2 cos(2 ) 4 2 cos(2 )

1 0.5sin(2 ) 2 cos(2 ) 1 0.5sin(2 )

      
     
       

CB                                (89) 

 
The radial compression function for this filter will be  2 4( ) k 1 8p (cos ) 8p (cos )                                   

corresponding to the following pair of 5 5  matrices: 
 

           k                   8p 8pC C C C C C C CB A A A A A B A B B                  (90) 
 

The final frequency transformation is given by (79), where 4   B A , 2k  CA A A  and 

2A  results from (87). 

 
5.3 Fan Filter Design in Polar Coordinates 
Besides the design method based on wedge filters addressed in subsection 4.3, fan filters can 
also be designed in polar coordinates. Let us consider the symmetric fan-type filter specified 
in the plane 1 2( , )   as in Fig.7 (a), given in the ideal case by relation (64). 

 

 

 

The fan filter contour can be exactly described as: 
 

cos for [ 4 , 4] [3 4 ,5 4]
( )

0 otherwise
       

   


                             (91) 

 
Using a change of variable and a Chebyshev-Padé approximation, we obtain the following 
approximation a( )   of ( )   for [ 2 , 2]   : 
 

              4 2 4 2
a( ) 0.1424 cos 0.106111cos 0.01047 cos 1.401727 cos 0.544317     (92) 

 
As before, we looked for an expression in 2cos   in order to substitute the relation (71). We 
get an expression for 1 2( , )   , then we write it in the plane 1 2(s ,s )  and finally find a 
frequency transformation similar to (79). The templates B and A result of size 5 5 , and A 
can be decomposed as a convolution of 3 3  templates:  1 1A A A  where 1A  is given in 
(87). The frequency response of the fan filter preserves the 1D prototype maximally-flat 
characteristics in the pass-band. 

 
5.4 Diamond-Shaped Filters Design in Polar Coordinates 
In this section a new analytical design method for diamond-shaped filters is described, using 
the above-discussed approach in polar coordinates (Matei, 2010). 
As a first step, we determine analytically the mapping which transforms a circle of given 
radius, in the frequency plane, into a square, having its vertices on the same circle. We refer 
to the geometrical construction in Fig.10 (a). In the frequency plane ( 1 2,  ) spanned by the 
axes 1O , 2O , we consider the circle of radius R. The default value will be R   . 
Let us take an arbitrary point 1P  situated on the first side of the square ( 1 2A A ), and let   be 
the angle between the segment 1OP  and the axis 1O ; 0  is the angle between 1OA and axis 

1O , where 1A  is the first vertex of the square. In the triangle 1 1P OA  we have the angles: 

1 1OA P 4  ; 1 1 0P OA     ; 1 1 0OP A 3 4      . Applying the sine theorem in the 
triangle 1 1P OA , we find the measure of segment 1OP  as a function of R and  : 
 

        1 1 1 1 1 0OP R sin(OA P ) sin(OP A ) R 2 2 cos( 4)                         (93) 

 
Thus we found the measure of 1OP  as a function of the current angle. However, (93) is 
valid only in the range:  0 02n 4 , 2(n 1) 4        . For a standard diamond filter 

0 0  , R 1  and in the first quadrant of the frequency plane ( ) 1 2 cos( 4)      . To 
express the value nOP  for an arbitrary angle  , when point nP  is located on any side of 
the square, including the vertices, we find a periodic function ( )   of the current angle  . 
This function has the period 2    and is plotted in Fig.10 (b). A convenient way to 
obtain a closed-form periodic approximation of this function is by using a rational 
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As in the previous example we find the transformation of the same form (79), where 1Z  and 
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Using the prototype (74) we get a transfer function 1 2H(z ,z )  similar to (81) and the templates 
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Besides the design method based on wedge filters addressed in subsection 4.3, fan filters can 
also be designed in polar coordinates. Let us consider the symmetric fan-type filter specified 
in the plane 1 2( , )   as in Fig.7 (a), given in the ideal case by relation (64). 
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Using a change of variable and a Chebyshev-Padé approximation, we obtain the following 
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get an expression for 1 2( , )   , then we write it in the plane 1 2(s ,s )  and finally find a 
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can be decomposed as a convolution of 3 3  templates:  1 1A A A  where 1A  is given in 
(87). The frequency response of the fan filter preserves the 1D prototype maximally-flat 
characteristics in the pass-band. 
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In this section a new analytical design method for diamond-shaped filters is described, using 
the above-discussed approach in polar coordinates (Matei, 2010). 
As a first step, we determine analytically the mapping which transforms a circle of given 
radius, in the frequency plane, into a square, having its vertices on the same circle. We refer 
to the geometrical construction in Fig.10 (a). In the frequency plane ( 1 2,  ) spanned by the 
axes 1O , 2O , we consider the circle of radius R. The default value will be R   . 
Let us take an arbitrary point 1P  situated on the first side of the square ( 1 2A A ), and let   be 
the angle between the segment 1OP  and the axis 1O ; 0  is the angle between 1OA and axis 

1O , where 1A  is the first vertex of the square. In the triangle 1 1P OA  we have the angles: 
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valid only in the range:  0 02n 4 , 2(n 1) 4        . For a standard diamond filter 

0 0  , R 1  and in the first quadrant of the frequency plane ( ) 1 2 cos( 4)      . To 
express the value nOP  for an arbitrary angle  , when point nP  is located on any side of 
the square, including the vertices, we find a periodic function ( )   of the current angle  . 
This function has the period 2    and is plotted in Fig.10 (b). A convenient way to 
obtain a closed-form periodic approximation of this function is by using a rational 
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approximation (e.g. Chebyshev-Padé). We look for such an approximation of the function 
( ) 1 cos     for a phase   [ 4 , 4] , in powers of the variable cos 4 , which is a 

periodic function with period 2 . Thus, the rational function will actually approximate 
the function ( )   over the entire range [0,2 ] . Since ( )   is not differentiable in the 
points , 2 ,0, 2      (corresponding to square vertices), as can be noticed in Fig.10 
(b), we consider the function 1( )   on the range   [ 4 , 4] , which is differentiable 
everywhere within this interval; we  obtain: 
 

   2 2( ) 1 cos 1+0.087481 1 0.413                                          (94) 
 

Now we use the variable change x cos(4 )   getting the intermediate function in variable x: 
 

        2 2
i (x) 1.082679+1.189232 x+0.202714 x 1+1.202559 x+0.271879 x            (95) 

 
Returning to the initial variable 0.25 arccosx   , by substituting back x cos(4 )  , we 
obtain a rational approximation in powers of cos(4 ) . In this expression we must replace   
by 4   , to get the final approximation for the function ( )  : 
 

1
1.04234 1.046915 cos(4 )+0.089227 cos(8 )( ) ( )

1 1.058647 cos(4 )+0.119671 cos(8 )
    

     
    

                         (96) 

 
1( )   is plotted in Fig.10 (c) and is an accurate approximation of the original function ( )  . 

Using trigonometric identities, this becomes a rational expression in 2n(cos )  with n 1 4  . 
 

          (x+0.347)(x+0.0156)(x 1.0156)(x 1.347)(x) 0.7456
(x+0.2342)(x+0.0136)(x 1.0136)(x 1.2342)

 
  

 
                            (97) 

 
where by x we denoted here 2(cos ) . At this point, substituting 2 2 2 2

1 1 2x (cos ) ( )        
we finally reach an expression of the radial function ( )   of the frequency variables 1  
and 2 , i.e. 1 2( , )   . 
Next a more general design method for a diamond shaped filter is proposed. It starts from a 
digital filter prototype, with transfer function H(z)  of order N. We discuss the common case 
when the numerator and denominator of H(z)  are polynomials in z of equal degrees. Let us 
consider a transfer function H(z)  of even order N, factorized into second order functions 
(biquads), with the general form (3) and the frequency response (5), defined in section 2. 
In the case of diamond filters, the frequency mapping defined in (70) is modified, becoming: 
 

2
1F :   , 2 2

1 1 2 1 2 1 2F ( , ) ( , )                                            (98) 
 

 

 
 (a) 

 
(b) 

 
(c) 

Fig. 10. (a) Square inscribed in the circle of radius R in the frequency plane, with an initial 
phase 0 ; (b) periodic function  ( ) ; (b) its periodic approximation  1( )     
 
The expression (96), using trigonometric identities, can be written in powers of 2(cos ) ; 

then, according to (71) we have 2 2 2 2
1 1 2(cos ) ( )       and by substitution we obtain an 

expression of the radial function ( )   in the two frequency variables 1  and 2 , denoted 

1 2( , )   . Finally we get an expression of the real frequency transformation of the general 
form (98). The next step is to find numerically approximations of the functions: 
 

 2 2
1 2 1 2 1 2C( , ) cos ( , )         ,  2 2

1 2 1 2 1 2S( , ) sin ( , )                     (99) 

 
We will approximate the above functions using a trigonometric series of the general form: 
 

N N

1 2 mn 1 2
m N n N

F( , ) a cos(m n )
 

                                               (100) 

 
where N is imposed by the required precision. This approximation is derived indirectly, 
using again the change of variables: 1 1arccosx  , 2 2arccosx  . Thus we obtain from 

1 2C( , )   and 1 2S( , )   the functions x 1 2C (x ,x )  and x 1 2S (x ,x )  with rather complicated 
expressions. However, using a symbolic calculation software, we can derive immediately 
the bivariate Taylor series expansion in 1x  and 2x , of the general form: 
 

N N
k l

x 1 2 kl 1 2
k N l N

F (x ,x ) b x x
 

                                                      (101) 
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approximation (e.g. Chebyshev-Padé). We look for such an approximation of the function 
( ) 1 cos     for a phase   [ 4 , 4] , in powers of the variable cos 4 , which is a 

periodic function with period 2 . Thus, the rational function will actually approximate 
the function ( )   over the entire range [0,2 ] . Since ( )   is not differentiable in the 
points , 2 ,0, 2      (corresponding to square vertices), as can be noticed in Fig.10 
(b), we consider the function 1( )   on the range   [ 4 , 4] , which is differentiable 
everywhere within this interval; we  obtain: 
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where N is imposed by the required precision. This approximation is derived indirectly, 
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Finally by substituting back in (101) 1 1x cos   and 2 2x cos   we return to the former 
variables and applying again trigonometric identities we obtain the desired expansions of 
the form (100). For instance with N 2  the expansions for 1 2C( , )   and 1 2S( , )   are: 
 

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

C( , ) 0.419822 0.517714 (cos cos ) 0.177207 (cos( ) cos( ))
0.054476 (cos( 2 ) cos( 2 ) cos(2 ) cos(2 ))
0.094109 (cos2 cos2 ) 0.008439 (cos(2 2 ) cos(2 2 ))

                
               
             

     (102) 

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

S( , ) 0.552617 0.393861 (cos cos ) 0.233406 (cos( ) cos( ))
0.041057 (cos( 2 ) cos( 2 ) cos(2 ) cos(2 ))
0.1238 (cos2 cos2 ) 0.009519 (cos(2 2 ) cos(2 2 ))

               
               
             

 (103) 

 
Next, expressing each cosine term as a function of the complex variables 1j

1z e  , 2j
2z e  : 

 m n m n
1 2 1 2 1 2cos(m n ) 0.5 z z z z      ,we get according to (99) the real functions Z 1 2C (z ,z ) , 

Z 1 2S (z ,z ) . Through the real frequency transformation (98) we finally reached the mappings: 
 

Z 1 2cos C (z ,z )         Z 1 2sin S (z ,z )                                         (104) 
 

Taking into account the expression (5), the 1D biquad function 2H (z)  given in (3) is mapped 
into the following 2D function 2D 1 2H (z ,z )  in the variables 1z  and 2z : 
 

      
 

      
1 0 2 Z 1 2 2 0 Z 1 2

2D 1 2 1 2 1 2
1 0 Z 1 2 0 Z 1 2

b (b b ) C (z ,z ) j (b b ) S (z ,z )H (z ,z ) B(z ,z ) A(z ,z )
a (1 a ) C (z ,z ) j (1 a ) S (z ,z )

     (105) 

 
We remark that the obtained 2D filter function has complex coefficients if it is expressed in 
the 2D Z transform. The real functions Z 1 2C (z ,z ) , Z 1 2S (z ,z )  can further be written as: 
 

T
Z 1 2 1 2C (z ,z )   Z C Z             T

Z 1 2 1 2S (z ,z )   Z S Z                              (106) 
 

where the vectors 1Z , 2Z  are again given in (27) and C , S  are matrices of size 5 5  which 
have as elements the coefficients identified from the expressions (102) and (103) of 1 2C( , )   
and 1 2S( , )  . For instance the matrix C results as: 
 

0.0471 0.0272 0.0042 0.0272 0.0471
0.0272 0.0886 0.2588 0.0886 0.0272
0.0042 0.2588 0.4198 0.2588 0.0042
0.0272 0.0886 0.2588 0.0886 0.0272
0.0471 0.0272 0.0042 0.0272 0.0471

   
   
   
 
  
    

C                            (107) 

 
where the elements were limited to 4 decimals. The matrices C and S have horizontal and 
vertical symmetry. Since the element values decrease rapidly towards margins, the size 

 

5 5  for the templates C and S is sufficient to ensure the accuracy of the numerical 
approximation, and higher order terms can be ignored with a negligible error. Taking into 
account relations (105) and (106), we finally express the complex matrices B and A that 
correspond to the numerator and denominator of 2D 1 2H (z ,z ) , i.e. 1 2B(z ,z )  and 1 2A(z ,z ) : 
 

1 0 2 2 0b (b b ) j(b b )       B E C S          1 0 0a (1 a ) j(1 a )       A E C S          (108) 
 

By E we denoted the 5 5  zero matrix with the central element of value 1. The mapping of 
the biquad function bH (z)  to 2D 1 2H (z ,z )  can be written as: 
 

   T T
b 2D 1 2 1 2 1 2H (z) H (z ,z )     Z B Z Z A Z                                   (109) 

 
The filter templates result complex due to the fact that 1 2C( , )   and 1 2S( , )   have even 
parity in 1  and 2  and thus can be developed in a trigonometric series of 1 2cos(m n )   . 
Design example. Let us consider the elliptic low-pass prototype filter function  
 

4 3 2

4 3 2
0.1539 z 0.482 z 0.6734 z 0.482 z 0.1539H(z)

z 0.155 z 0.7649 z 0.0376 z 0.079
       


      

                        (110) 

 
of order N 4 , pR 0.7 dB passband ripple, a minimum stop-band attenuation SR 40 dB, 
pass-band edge frequency S 0.5  , having a maximally-flat frequency response magnitude, 
with a relatively steep descent (Fig.11(a)). We design a diamond shaped filter starting from 
this prototype. H(z)  can be factorized as follows: 
 

2 2

2 2
(z 1.2884z 1) (z 1.8425z 1)H(z) 0.1539

(z 0.2554z 0.6732) (z 0.1004z 0.1173)
   

  
   

                            (111) 

 
For the first biquad from (111), we identify the coefficients of the general form (3): 2b 1 , 

1b 1.2884 , 0b 1 , 1a 0.2554 , 0a 0.6732 . Since 0 2b b , the matrix B from (108) results 
real (the imaginary part is cancelled), while matrix A results complex: 
 

1 1.2884 2   B E C       1 0.2554 1.6732 0.3268j     A E C S                      (112) 
 

For the second biquad from (111) we get as well: 
 

          2 21.8425 2            0.1004 1.1173 0.8827 jB E C A E C S                    (113) 
 

The final filter templates B, A result as convolutions of the templates for the two biquads: 
 

1 20.1359  B B B              1 2 A A A                                          (114) 
 

The coefficient in front of H(z)  from (111) was included in B. 
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Finally by substituting back in (101) 1 1x cos   and 2 2x cos   we return to the former 
variables and applying again trigonometric identities we obtain the desired expansions of 
the form (100). For instance with N 2  the expansions for 1 2C( , )   and 1 2S( , )   are: 
 

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

C( , ) 0.419822 0.517714 (cos cos ) 0.177207 (cos( ) cos( ))
0.054476 (cos( 2 ) cos( 2 ) cos(2 ) cos(2 ))
0.094109 (cos2 cos2 ) 0.008439 (cos(2 2 ) cos(2 2 ))

                
               
             

     (102) 

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

S( , ) 0.552617 0.393861 (cos cos ) 0.233406 (cos( ) cos( ))
0.041057 (cos( 2 ) cos( 2 ) cos(2 ) cos(2 ))
0.1238 (cos2 cos2 ) 0.009519 (cos(2 2 ) cos(2 2 ))

               
               
             

 (103) 

 
Next, expressing each cosine term as a function of the complex variables 1j

1z e  , 2j
2z e  : 

 m n m n
1 2 1 2 1 2cos(m n ) 0.5 z z z z      ,we get according to (99) the real functions Z 1 2C (z ,z ) , 

Z 1 2S (z ,z ) . Through the real frequency transformation (98) we finally reached the mappings: 
 

Z 1 2cos C (z ,z )         Z 1 2sin S (z ,z )                                         (104) 
 

Taking into account the expression (5), the 1D biquad function 2H (z)  given in (3) is mapped 
into the following 2D function 2D 1 2H (z ,z )  in the variables 1z  and 2z : 
 

      
 

      
1 0 2 Z 1 2 2 0 Z 1 2

2D 1 2 1 2 1 2
1 0 Z 1 2 0 Z 1 2

b (b b ) C (z ,z ) j (b b ) S (z ,z )H (z ,z ) B(z ,z ) A(z ,z )
a (1 a ) C (z ,z ) j (1 a ) S (z ,z )

     (105) 

 
We remark that the obtained 2D filter function has complex coefficients if it is expressed in 
the 2D Z transform. The real functions Z 1 2C (z ,z ) , Z 1 2S (z ,z )  can further be written as: 
 

T
Z 1 2 1 2C (z ,z )   Z C Z             T

Z 1 2 1 2S (z ,z )   Z S Z                              (106) 
 

where the vectors 1Z , 2Z  are again given in (27) and C , S  are matrices of size 5 5  which 
have as elements the coefficients identified from the expressions (102) and (103) of 1 2C( , )   
and 1 2S( , )  . For instance the matrix C results as: 
 

0.0471 0.0272 0.0042 0.0272 0.0471
0.0272 0.0886 0.2588 0.0886 0.0272
0.0042 0.2588 0.4198 0.2588 0.0042
0.0272 0.0886 0.2588 0.0886 0.0272
0.0471 0.0272 0.0042 0.0272 0.0471

   
   
   
 
  
    

C                            (107) 

 
where the elements were limited to 4 decimals. The matrices C and S have horizontal and 
vertical symmetry. Since the element values decrease rapidly towards margins, the size 

 

5 5  for the templates C and S is sufficient to ensure the accuracy of the numerical 
approximation, and higher order terms can be ignored with a negligible error. Taking into 
account relations (105) and (106), we finally express the complex matrices B and A that 
correspond to the numerator and denominator of 2D 1 2H (z ,z ) , i.e. 1 2B(z ,z )  and 1 2A(z ,z ) : 
 

1 0 2 2 0b (b b ) j(b b )       B E C S          1 0 0a (1 a ) j(1 a )       A E C S          (108) 
 

By E we denoted the 5 5  zero matrix with the central element of value 1. The mapping of 
the biquad function bH (z)  to 2D 1 2H (z ,z )  can be written as: 
 

   T T
b 2D 1 2 1 2 1 2H (z) H (z ,z )     Z B Z Z A Z                                   (109) 

 
The filter templates result complex due to the fact that 1 2C( , )   and 1 2S( , )   have even 
parity in 1  and 2  and thus can be developed in a trigonometric series of 1 2cos(m n )   . 
Design example. Let us consider the elliptic low-pass prototype filter function  
 

4 3 2

4 3 2
0.1539 z 0.482 z 0.6734 z 0.482 z 0.1539H(z)

z 0.155 z 0.7649 z 0.0376 z 0.079
       


      

                        (110) 

 
of order N 4 , pR 0.7 dB passband ripple, a minimum stop-band attenuation SR 40 dB, 
pass-band edge frequency S 0.5  , having a maximally-flat frequency response magnitude, 
with a relatively steep descent (Fig.11(a)). We design a diamond shaped filter starting from 
this prototype. H(z)  can be factorized as follows: 
 

2 2

2 2
(z 1.2884z 1) (z 1.8425z 1)H(z) 0.1539

(z 0.2554z 0.6732) (z 0.1004z 0.1173)
   

  
   

                            (111) 

 
For the first biquad from (111), we identify the coefficients of the general form (3): 2b 1 , 

1b 1.2884 , 0b 1 , 1a 0.2554 , 0a 0.6732 . Since 0 2b b , the matrix B from (108) results 
real (the imaginary part is cancelled), while matrix A results complex: 
 

1 1.2884 2   B E C       1 0.2554 1.6732 0.3268j     A E C S                      (112) 
 

For the second biquad from (111) we get as well: 
 

          2 21.8425 2            0.1004 1.1173 0.8827 jB E C A E C S                    (113) 
 

The final filter templates B, A result as convolutions of the templates for the two biquads: 
 

1 20.1359  B B B              1 2 A A A                                          (114) 
 

The coefficient in front of H(z)  from (111) was included in B. 
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       (a) (b) (c) 

  
                          (d)                     (e) 

Fig. 11. (a) Magnitude of the elliptic low-pass prototype filter; frequency responses (b), (d) 
and contour plots (c), (e) for two diamond filters 

  
6. Applications and Simulation Results 

All the filters discussed in this chapter have interesting applications in image processing. 
For the directional filters designed in section 3 some examples are given in (Matei & Matei, 
2009) and for zero-phase directional filters in (Matei, 2009, b).  
The wedge filter can be used in image filtering to select from a given image the lines with a 
specified orientation. The spectrum of a straight line is oriented in the plane  1 2( , )  at an 
angle of 2  with respect to the line direction. The binary test image in Fig.12 (a) contains 
straight lines with different lengths and orientations and is filtered with a maximally-flat 
wedge filter with aperture    6  and orientation    5 , designed using the method from 
sub-section 4.1. In the filtered image (Fig.12 (b)) only the lines which have the spectrum 
oriented more or less along the filter characteristic, remain practically unchanged, while all 
the other lines appear more or less blurred, due to directional low-pass filtering. The 
directional resolution depends on the filter angular selectivity given by  . In the second 
example shown in Fig.12 (c) we consider a real grayscale image representing a straw texture. 
The straws have random directions and choosing different filter orientations we can select 
the ones with roughly the same orientation and filter out the rest. The aperture angle was 
   5  and three different orientations were used (    6 ,    3 ,   2 3 ), obtaining the 
filtered images (d), (e), (f). These simple examples illustrate the wedge filter capabilities. 
 

 

  
                      (a)                     (b)                       (c) 

  
                     (d)                       (e)                        (f) 

Fig. 12. (a) Binary test image; (b) wedge filter output (    6 ,    5 ); (c) grayscale straw 
texture image; (d), (e), (f) filtering results using    5  and    6 ,    3 ,   2 3  
 

   
(a) (b) (c) (d) 

  
(e) (f) (g) (h) 

Fig. 13. (a) Retina angiography; (b)-(h) images resulted as output of the filter bank channels 
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Fig. 11. (a) Magnitude of the elliptic low-pass prototype filter; frequency responses (b), (d) 
and contour plots (c), (e) for two diamond filters 

  
6. Applications and Simulation Results 

All the filters discussed in this chapter have interesting applications in image processing. 
For the directional filters designed in section 3 some examples are given in (Matei & Matei, 
2009) and for zero-phase directional filters in (Matei, 2009, b).  
The wedge filter can be used in image filtering to select from a given image the lines with a 
specified orientation. The spectrum of a straight line is oriented in the plane  1 2( , )  at an 
angle of 2  with respect to the line direction. The binary test image in Fig.12 (a) contains 
straight lines with different lengths and orientations and is filtered with a maximally-flat 
wedge filter with aperture    6  and orientation    5 , designed using the method from 
sub-section 4.1. In the filtered image (Fig.12 (b)) only the lines which have the spectrum 
oriented more or less along the filter characteristic, remain practically unchanged, while all 
the other lines appear more or less blurred, due to directional low-pass filtering. The 
directional resolution depends on the filter angular selectivity given by  . In the second 
example shown in Fig.12 (c) we consider a real grayscale image representing a straw texture. 
The straws have random directions and choosing different filter orientations we can select 
the ones with roughly the same orientation and filter out the rest. The aperture angle was 
   5  and three different orientations were used (    6 ,    3 ,   2 3 ), obtaining the 
filtered images (d), (e), (f). These simple examples illustrate the wedge filter capabilities. 
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Fig. 12. (a) Binary test image; (b) wedge filter output (    6 ,    5 ); (c) grayscale straw 
texture image; (d), (e), (f) filtering results using    5  and    6 ,    3 ,   2 3  
 

   
(a) (b) (c) (d) 

  
(e) (f) (g) (h) 

Fig. 13. (a) Retina angiography; (b)-(h) images resulted as output of the filter bank channels 
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Applying the design method for wedge filters with arbitrary aperture and orientation, it is 
easy to obtain the components of the Bamberger-type filter bank with 8 bands (Fig.5). It is 
sufficient to design only two adjacent component filters of the bank (bands 5 and 6), the 
others resulting from symmetry. This filter bank was applied in filtering a typical medical 
image. The most currently used vascular imaging technique is X-ray angiography, mainly in 
diagnosing cardio-vascular pathologies, but also in assessing diabetic retinopathy, a severe 
complication seriously impairing vision. Clinicians usually search in angiograms relevant 
features like number and position of vessels (arteries, capillaries). 
A filter bank like the one presented above may be used in analyzing angiography images by 
detecting vessels with a given orientation. Let us consider the retina angiogram in Fig.13 (a), 
featuring some pathological elements indicating a diabetic retinopathy. This image is 
applied to the designed 8-band wedge filter bank. Fig.13 (b)-(h) show the directionally 
filtered images. The vessels whose spectrum overlaps more or less with the filter 
characteristic remain visible, while the others are blurred, an effect of the low-pass filtering. 

 
7. Conclusion 

The design methods presented in this chapter are mainly analytical but include as well some 
numerical optimization techniques. The 2D filters result from specified 1D prototypes with a 
desired characteristic, usually low-pass and maximally-flat or very selective. Then for each 
type of 2D filter, a particular spectral transformation is derived.  Thus the 2D filter results 
from its factorized prototype function by a simple substitution. Only recursive filters were 
approached, since we envisaged obtaining efficient, low-order filters. The designed filters 
are versatile in the sense that prototype parameters (band-width, selectivity) can be adjusted 
and the 2D filter will inherit these properties. An advantage of the analytical approach over 
the completely numerical optimization techniques is the possibility to control the 2D filter 
parameters by adjusting the prototype. Several types of 2D filters were approached. A 
novelty is the analytical design method in polar coordinates, which can yield selective two-
directional and even multi-directional filters, and also fan and diamond filters. In polar 
coordinates more general filters with a specified rotation angle can be synthesized. 
Another is the design of zero-phase 2D filters from prototypes with real transfer functions, 
derived by approximating the magnitude of a common IIR filter. Stability of the designed 
filters is also an important problem and will be studied in detail in future work on this topic. 
In principle the spectral transformations used preserve the stability of the 1D prototype. The 
derived 2D filter could become unstable only if the numerical approximations introduce 
large errors. In this case the precision of approximation has to be increased by considering 
higher order terms, which would increase in turn the filter complexity; however, this is the 
price paid for obtaining efficient and stable 2D filters. Further research will focus on an 
efficient implementation of the designed filters and also on their applications in real-life 
image processing. 
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Applying the design method for wedge filters with arbitrary aperture and orientation, it is 
easy to obtain the components of the Bamberger-type filter bank with 8 bands (Fig.5). It is 
sufficient to design only two adjacent component filters of the bank (bands 5 and 6), the 
others resulting from symmetry. This filter bank was applied in filtering a typical medical 
image. The most currently used vascular imaging technique is X-ray angiography, mainly in 
diagnosing cardio-vascular pathologies, but also in assessing diabetic retinopathy, a severe 
complication seriously impairing vision. Clinicians usually search in angiograms relevant 
features like number and position of vessels (arteries, capillaries). 
A filter bank like the one presented above may be used in analyzing angiography images by 
detecting vessels with a given orientation. Let us consider the retina angiogram in Fig.13 (a), 
featuring some pathological elements indicating a diabetic retinopathy. This image is 
applied to the designed 8-band wedge filter bank. Fig.13 (b)-(h) show the directionally 
filtered images. The vessels whose spectrum overlaps more or less with the filter 
characteristic remain visible, while the others are blurred, an effect of the low-pass filtering. 

 
7. Conclusion 

The design methods presented in this chapter are mainly analytical but include as well some 
numerical optimization techniques. The 2D filters result from specified 1D prototypes with a 
desired characteristic, usually low-pass and maximally-flat or very selective. Then for each 
type of 2D filter, a particular spectral transformation is derived.  Thus the 2D filter results 
from its factorized prototype function by a simple substitution. Only recursive filters were 
approached, since we envisaged obtaining efficient, low-order filters. The designed filters 
are versatile in the sense that prototype parameters (band-width, selectivity) can be adjusted 
and the 2D filter will inherit these properties. An advantage of the analytical approach over 
the completely numerical optimization techniques is the possibility to control the 2D filter 
parameters by adjusting the prototype. Several types of 2D filters were approached. A 
novelty is the analytical design method in polar coordinates, which can yield selective two-
directional and even multi-directional filters, and also fan and diamond filters. In polar 
coordinates more general filters with a specified rotation angle can be synthesized. 
Another is the design of zero-phase 2D filters from prototypes with real transfer functions, 
derived by approximating the magnitude of a common IIR filter. Stability of the designed 
filters is also an important problem and will be studied in detail in future work on this topic. 
In principle the spectral transformations used preserve the stability of the 1D prototype. The 
derived 2D filter could become unstable only if the numerical approximations introduce 
large errors. In this case the precision of approximation has to be increased by considering 
higher order terms, which would increase in turn the filter complexity; however, this is the 
price paid for obtaining efficient and stable 2D filters. Further research will focus on an 
efficient implementation of the designed filters and also on their applications in real-life 
image processing. 
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1. Introduction     

Digital filters (Hamming, 1998; Chen, 2001) are versatile, practical and effective. They can be 
used in most computerized applications of modern technology and science. Nearly every 
person in technologically developed regions daily encounter digital filters in cars, dvd-
recorders, computers, telecommunication systems etc. Usually, digital filters are designed 
and optimized by signal processing experts for standardized tasks in specific systems. 
Extensive work may result in advanced and complex filters. This is motivated by massive 
duplication. The marginal production cost for a filter is practically zero and the 
development cost per unit is negligible. The advantages of using digital instead of analogue 
filters are often profound. Not only are the costs negligible, their flexibility makes it possible 
to achieve superior results. Even unstable operations can be realized by means of reversed 
filtering. The limitations of digital filters are mainly mathematical, rather than physical as 
for analogue filters. 
Dynamic measurements condense observations into quantitative representations 
(Hessling, 2010a). Dynamic methods for improving, interpreting and assessing the quality of 
measurements are relatively scarce. These methods can be formulated in terms of ideal 
prototype systems acting on physical signals to produce the desired information. A dynamic 
calibration procedure is usually required to find the model from which such prototypes are 
determined. Ideal prototypes are approximated and optimized into realizable prototypes 
which can be cast into digital filters by means of sampling. These filters differ from most 
common filters of today. They are dedicated filters with a high level of adaptation and 
flexibility, designed to improve or simplify the evaluation of a wide range of measurements 
for many different purposes. The common denominator of all filters is that they are 
intended to provide a supporting link of standardized dynamic analysis between the ‘raw’ 
measurements and an inexperienced destined user. The digital filters and the measurement 
devices are preferably seamlessly integrated in the final application, which most often 
already has a computer program for administrating the measurement. 
The motivation for making any measurement is to extract information. The desired 
information is rarely identical to measured signals. Measured signals need to be processed 
or analyzed. Signals may be corrected. To determine how wrong the result might be, the 
uncertainty needs to be estimated. The measurement system may be one part of a complex 
dynamic system, for instance, an accelerometer attached to a vibrating vehicle. Sometimes 
transformations between various points in space, or electrical quantities etc. are required. 
We might be interested in the consequences of measured signals. The impact of interest is 
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often quantified in scalar measures or features like peak loads in crash testing, average 
power in electrical systems, or accumulated risk of injury. 
The analysis is based on how dynamic systems are modeled with differential equations, 
rather than any specific system which can be electrical, mechanical, etc. To illustrate the 
design, or synthesis and application of digital filters, mechanical systems will be used. There 
are two reasons for this choice: Mechanical systems are widely understood and digital filters 
have not yet been utilized in this field to any significant extent. The applications will be split 
into two categories, analysis of measured signals (section 3) and feature extraction 
(section 4). For analyzing measured signals the same mechanical transducer system as well 
as triangular input signal will be used. This example represents the simplest possible non-
trivial dynamic measurement system, which is good for illustration of principles rather than 
details. Two examples of feature extraction are given, the analysis of road humps 
(section 4.1) and the determination of road surface roughness, or texture (section 4.2). Both 
examples relate to traffic and the structure of road surface, and both address potential health 
risks. The geometric scales differ: A speed limiting road hump is a 3-20 m long intentionally 
modified part of the road. The texture relates to unevenness of 5-50 mm wavelength. The 
road hump profile is translated to a time-dependent excitation signal of a bandwidth 
varying with the speed of passage. The surface texture example illustrates that digital filters 
are not limited to the time domain but work perfectly well also for space domain analysis. 
The digital filters will be expressed on a standard linear-in-response finite/infinite impulse 
response (FIR/IIR) form for direct implementation. It will be indicated how any filter may 
be transferred to a state-space form for generalization into a Kalman filter (Simon, 2006). 

 
2. Synthesis of digital filters from prototypes 

2.1 General framework 
The real world of observable physical quantities are almost exclusively continuous in time 
as well as amplitude. The world of information we are interested in may contain anything 
we can imagine. The link between the two is the world of computers which is discrete in 
time as well as amplitude. Our interest may be expressed in prototype systems. These hybrid 
systems are not generally physical, but are formulated as if they would. The prototypes for 
dynamic correction in section 3.2 and the sensitivity systems in section 3.3.1 are two 
examples. The prototypes will specify the desired filter operation completely. No 
conventional filter specification in terms of pass-band, stop-band and allowed ripple etc. 
will be used. Prototypes are widely used in filter synthesis. The concept is here further 
generalized to describe virtually anything we might be interested in. 
The major part of this chapter will be devoted to derivation of realizable dynamic prototype 
systems continuous in time (CT). These prototypes are sampled to convert them into systems 
discrete in time (DT), for direct interpretation as digital filters. The translation of any 
continuous formulation to a discrete formulation will be denoted sampling. The terminology 
is here generalized to reflect symmetries: Signals, systems as well as statistical information 
may be sampled. The methods of sampling are rather different though. Sampling of signals 
is unique. Sampling of systems necessarily adds distortion and there is a multitude of 
different well-known methods. Random sampling of statistical information is practiced in 
Monte Carlo simulations (Metropolis, 1949; Rubenstein & Kroese, 2007) but there are other 
recent and more effective methods of deterministic sampling (Julier & Uhlmann, 2004). 

 

Sampling is here lifted to a more abstract level since statistical information is neither 
physical, nor directly observable. Statistical dynamic models may be sampled twice: The 
statistical information is first sampled to obtain a finite set of CT prototype systems. Each 
prototype system is then sampled to find a corresponding digital filter. Sampling of CT 
systems will always render systematic model errors. These will be called discretization time 
errors (DTE) (Hessling, 2008a). The DTE is different for different input signals and may thus 
be visualized in various ways, depending on the chosen measure of signal error. If the DTE 
is given as a function of system bandwidth, the utilization of a mapping expresses how much 
of the maximum (DTE=0) bandwidth that may be used for acceptable DTE. The theoretical 
limit is set by the sampling rate 1 SS Tf  which results in a maximum bandwidth given by 
the Nyquist frequency 2SN ff  . For many prototypes though there may be other lower 
bandwidth limits, for instance the limit of unacceptable noise amplification. Reversed or 
backward digital filtering is an allowed luxury for analyzing measurements. It simplifies 
many tasks like stabilization and elimination of phase distortion tremendously and will be 
used extensively. Reversed filtering is implemented in three steps: 1. The beginning and the 
end of the signal are exchanged to ‘reverse direction’. 2. Forward filtering 3. Repetition of 
step 1. Symmetric forward and reverse filtering (Gustafsson, 1996) is in its simplest form 
(Hamming, 1998) implemented as repeated filtering in both directions. The fall-off rate as 
well as the attenuation at the nominal cross-over frequency is doubled compared to forward 
filtering. The total phase response vanishes identically (at all frequencies). 
The methods for sampling of prototype systems fall into two categories, numerical sampling 
and mapping techniques. Numerical sampling minimizes the discrepancy between 
characterizations of the CT prototype and the sampled DT model (Elster et. al., 2007). The 
characterizations may be given in any representation, for instance in the time or frequency 
domain. The deviation is often quantified with a weighted least square error (Bjork, 1996). 
Splitting system identification of CT models (Pintelon & Schoukens, 2001) and numeral 
sampling into successive steps of analysis is strongly discouraged: The two operations are 
comparable and better optimized jointly, as is conventional (Ljung, 1999). Mapping 
techniques are based on universal relations between CT and DT models and it is simple to 
switch sampling rate. Robustness and simplicity are paid with a minor reduction of 
accuracy due to lack of optimality of the mapping rule. The accuracy is determined by the 
calculated DTE, and controlled by the selection of mapping. A brief recapitulation of some 
mappings and their properties are given in the next section. 

 
2.2 Mappings for sampling of prototypes 
A common class of mappings samples the response of the CT prototype system to an input 
signal of particular interest. The calculated CT response is sampled like any signal to yield a 
DT system which does not distort, or is invariant with respect to the selected input signal. 
The impulse invariance method (IMP) (Chen, 2001) samples the impulse response  th . The 
calculation is facilitated by expansion in residues kr  and poles kp , 
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often quantified in scalar measures or features like peak loads in crash testing, average 
power in electrical systems, or accumulated risk of injury. 
The analysis is based on how dynamic systems are modeled with differential equations, 
rather than any specific system which can be electrical, mechanical, etc. To illustrate the 
design, or synthesis and application of digital filters, mechanical systems will be used. There 
are two reasons for this choice: Mechanical systems are widely understood and digital filters 
have not yet been utilized in this field to any significant extent. The applications will be split 
into two categories, analysis of measured signals (section 3) and feature extraction 
(section 4). For analyzing measured signals the same mechanical transducer system as well 
as triangular input signal will be used. This example represents the simplest possible non-
trivial dynamic measurement system, which is good for illustration of principles rather than 
details. Two examples of feature extraction are given, the analysis of road humps 
(section 4.1) and the determination of road surface roughness, or texture (section 4.2). Both 
examples relate to traffic and the structure of road surface, and both address potential health 
risks. The geometric scales differ: A speed limiting road hump is a 3-20 m long intentionally 
modified part of the road. The texture relates to unevenness of 5-50 mm wavelength. The 
road hump profile is translated to a time-dependent excitation signal of a bandwidth 
varying with the speed of passage. The surface texture example illustrates that digital filters 
are not limited to the time domain but work perfectly well also for space domain analysis. 
The digital filters will be expressed on a standard linear-in-response finite/infinite impulse 
response (FIR/IIR) form for direct implementation. It will be indicated how any filter may 
be transferred to a state-space form for generalization into a Kalman filter (Simon, 2006). 

 
2. Synthesis of digital filters from prototypes 

2.1 General framework 
The real world of observable physical quantities are almost exclusively continuous in time 
as well as amplitude. The world of information we are interested in may contain anything 
we can imagine. The link between the two is the world of computers which is discrete in 
time as well as amplitude. Our interest may be expressed in prototype systems. These hybrid 
systems are not generally physical, but are formulated as if they would. The prototypes for 
dynamic correction in section 3.2 and the sensitivity systems in section 3.3.1 are two 
examples. The prototypes will specify the desired filter operation completely. No 
conventional filter specification in terms of pass-band, stop-band and allowed ripple etc. 
will be used. Prototypes are widely used in filter synthesis. The concept is here further 
generalized to describe virtually anything we might be interested in. 
The major part of this chapter will be devoted to derivation of realizable dynamic prototype 
systems continuous in time (CT). These prototypes are sampled to convert them into systems 
discrete in time (DT), for direct interpretation as digital filters. The translation of any 
continuous formulation to a discrete formulation will be denoted sampling. The terminology 
is here generalized to reflect symmetries: Signals, systems as well as statistical information 
may be sampled. The methods of sampling are rather different though. Sampling of signals 
is unique. Sampling of systems necessarily adds distortion and there is a multitude of 
different well-known methods. Random sampling of statistical information is practiced in 
Monte Carlo simulations (Metropolis, 1949; Rubenstein & Kroese, 2007) but there are other 
recent and more effective methods of deterministic sampling (Julier & Uhlmann, 2004). 

 

Sampling is here lifted to a more abstract level since statistical information is neither 
physical, nor directly observable. Statistical dynamic models may be sampled twice: The 
statistical information is first sampled to obtain a finite set of CT prototype systems. Each 
prototype system is then sampled to find a corresponding digital filter. Sampling of CT 
systems will always render systematic model errors. These will be called discretization time 
errors (DTE) (Hessling, 2008a). The DTE is different for different input signals and may thus 
be visualized in various ways, depending on the chosen measure of signal error. If the DTE 
is given as a function of system bandwidth, the utilization of a mapping expresses how much 
of the maximum (DTE=0) bandwidth that may be used for acceptable DTE. The theoretical 
limit is set by the sampling rate 1 SS Tf  which results in a maximum bandwidth given by 
the Nyquist frequency 2SN ff  . For many prototypes though there may be other lower 
bandwidth limits, for instance the limit of unacceptable noise amplification. Reversed or 
backward digital filtering is an allowed luxury for analyzing measurements. It simplifies 
many tasks like stabilization and elimination of phase distortion tremendously and will be 
used extensively. Reversed filtering is implemented in three steps: 1. The beginning and the 
end of the signal are exchanged to ‘reverse direction’. 2. Forward filtering 3. Repetition of 
step 1. Symmetric forward and reverse filtering (Gustafsson, 1996) is in its simplest form 
(Hamming, 1998) implemented as repeated filtering in both directions. The fall-off rate as 
well as the attenuation at the nominal cross-over frequency is doubled compared to forward 
filtering. The total phase response vanishes identically (at all frequencies). 
The methods for sampling of prototype systems fall into two categories, numerical sampling 
and mapping techniques. Numerical sampling minimizes the discrepancy between 
characterizations of the CT prototype and the sampled DT model (Elster et. al., 2007). The 
characterizations may be given in any representation, for instance in the time or frequency 
domain. The deviation is often quantified with a weighted least square error (Bjork, 1996). 
Splitting system identification of CT models (Pintelon & Schoukens, 2001) and numeral 
sampling into successive steps of analysis is strongly discouraged: The two operations are 
comparable and better optimized jointly, as is conventional (Ljung, 1999). Mapping 
techniques are based on universal relations between CT and DT models and it is simple to 
switch sampling rate. Robustness and simplicity are paid with a minor reduction of 
accuracy due to lack of optimality of the mapping rule. The accuracy is determined by the 
calculated DTE, and controlled by the selection of mapping. A brief recapitulation of some 
mappings and their properties are given in the next section. 

 
2.2 Mappings for sampling of prototypes 
A common class of mappings samples the response of the CT prototype system to an input 
signal of particular interest. The calculated CT response is sampled like any signal to yield a 
DT system which does not distort, or is invariant with respect to the selected input signal. 
The impulse invariance method (IMP) (Chen, 2001) samples the impulse response  th . The 
calculation is facilitated by expansion in residues kr  and poles kp , 
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Sampling with sampling time interval 1 SS fT  results in the DT impulse response ng   and 
transfer function  zG , 
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The IMP method requires a decaying frequency response   SfiH   ,0  to avoid 
aliasing. Thus it can only be used if the number of poles of the CT prototype exceeds its 
number of zeros. The static amplification is not preserved, see Fig. 1 (left). Poles of the CT 
system are mapped to poles of the sampled DT system with an exponential mapping 

 Skk Tpp exp . The zeros of the two systems have no simple relation, not even their 
number is preserved. If instead also zeros are mapped like the poles of the IMP method, the 
exponential pole-zero mapping (EXP) results (Chen, 2001; Hessling, 2008a), 
 
   kkkSkk pzqTqq ,,exp  . (3) 
 
This simple mapping preserves the static amplification, the numbers of poles and zeros as 
well as the stability properties. The high frequency amplification is bounded. Its major 
drawback is a fairly low utilization. The mapping is transparent as the underlying CT model 
in the s-plane can be discerned in the z-plane. This will be the default mapping. 
‘Functional’ mappings are described by substitution rules  zs  . The DT transfer 
function  zG  is found from the CT transfer function  sH  as     zHzG  . It is important 
to compensate for the time delays HG  ,  of the DT and CT systems, respectively. The delays 
should conform to the measure of the DTE. If the DTE H  is expressed in the frequency 
domain,     exp( ) exp exp( )G S HH i G i T i H i      . The standard bi-linear mapping 
(BIL) (Chen, 2001) is a functional mapping, 
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The BIL mapping unfortunately introduces singularities at the Nyquist frequency  1z . It 
also results in a non-linear mapping of the frequency axis called frequency warping 
(Chen, 2001). 
Since  zs   is the differential operator and z  the translation operator, the mapping 
function is nothing else than a discrete time approximation of a simple derivative expressed 
in translations. The symmetric difference quotient approximation 

       SSSt TTtfTtftf 2  directly renders the mapping   STzzs 21 . A novel 
thn  order symmetric approximation is obtained by expanding in symmetric difference 

quotients of various integer steps k , 
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The coefficients  n
kc  may be found by minimizing the DTE over the whole frequency axis up 

to the Nyquist frequency using linear regression for the approximation, 
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A low-frequency approximation is found by expanding the sine-function and matching as 
many powers as allowed by the order n . This yields a whole sequence of difference 
quotient mappings  nDQ . The DTE decreases rapidly with n , but the number of poles and 
zeros increases with a factor of n2 . 
The choice of method for sampling prototypes is in practice influenced by many aspects. It 
should be stressed that the DTE seldom is the only relevant issue. The discussion of various 
mappings for sampling of prototype systems is concluded with an illustration of the DTE 
(Fig. 1), for the example model described in section 3.1.1. 
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Fig. 1. The normalized DTE for the transducer model (Eq. 11) and various mappings 
(notation is given in the text). The mappings  nDQ  are rescaled for comparison (right). 

 
2.3 State space formulation for Kalman filter 
Kalman filters are popular tools for optimal estimation of signals in noisy measurements 
(Simon, 2006). Conventional digital filters are closely related to Kalman filtering. In this 
section it will be briefly indicated how any digital filter can be converted into the 
formulation used for Kalman filters. 
Kalman filters utilize DT state-space equations, which are equivalent to transfer functions. 
State-space equations exist for both CT and DT and are not uniquely specified by the 
system. Their main feature is linearity in the differential t  (CT) or displacement operator 
  (DT). State-space equations are convenient for analyzing large and complex multiple-
input multiple-output systems, like finding the response of vehicles (section 4.1.2), using 
linear algebra. Sampling of CT state-space equations can be made by transformation to 
transfer functions, sample (section 2.2) and transform to DT state-space equations.  
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Sampling with sampling time interval 1 SS fT  results in the DT impulse response ng   and 
transfer function  zG , 
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The IMP method requires a decaying frequency response   SfiH   ,0  to avoid 
aliasing. Thus it can only be used if the number of poles of the CT prototype exceeds its 
number of zeros. The static amplification is not preserved, see Fig. 1 (left). Poles of the CT 
system are mapped to poles of the sampled DT system with an exponential mapping 

 Skk Tpp exp . The zeros of the two systems have no simple relation, not even their 
number is preserved. If instead also zeros are mapped like the poles of the IMP method, the 
exponential pole-zero mapping (EXP) results (Chen, 2001; Hessling, 2008a), 
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well as the stability properties. The high frequency amplification is bounded. Its major 
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to compensate for the time delays HG  ,  of the DT and CT systems, respectively. The delays 
should conform to the measure of the DTE. If the DTE H  is expressed in the frequency 
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The BIL mapping unfortunately introduces singularities at the Nyquist frequency  1z . It 
also results in a non-linear mapping of the frequency axis called frequency warping 
(Chen, 2001). 
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The coefficients  n
kc  may be found by minimizing the DTE over the whole frequency axis up 

to the Nyquist frequency using linear regression for the approximation, 
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A low-frequency approximation is found by expanding the sine-function and matching as 
many powers as allowed by the order n . This yields a whole sequence of difference 
quotient mappings  nDQ . The DTE decreases rapidly with n , but the number of poles and 
zeros increases with a factor of n2 . 
The choice of method for sampling prototypes is in practice influenced by many aspects. It 
should be stressed that the DTE seldom is the only relevant issue. The discussion of various 
mappings for sampling of prototype systems is concluded with an illustration of the DTE 
(Fig. 1), for the example model described in section 3.1.1. 
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Fig. 1. The normalized DTE for the transducer model (Eq. 11) and various mappings 
(notation is given in the text). The mappings  nDQ  are rescaled for comparison (right). 
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State-space equations exist for both CT and DT and are not uniquely specified by the 
system. Their main feature is linearity in the differential t  (CT) or displacement operator 
  (DT). State-space equations are convenient for analyzing large and complex multiple-
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A state-space formulation contains two equations, a dynamic state-space equation and a 
static measurement equation. The state-space equation is the ‘engine’ that drives the system 
in response to its input. The measurement equation describes how our quantity of interest is 
related to the state-space variables and the input. This separation makes it possible to use 
virtually any set of [state-space] variables. They may be physical quantities but often are not. 
The key aspect of all sets of variables is that they split the model into several equations 
linear in the differential t  (CT) or displacement   (DT) operator. In CT, 
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The input x , the output y  and the state-space variables u  are all column vectors. Applying 
the La-place transform, the transfer function is obtained by matrix inversion, 
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This transformation from any linear state-space formulation to the corresponding transfer 
function non-linear in s  is unique. The set of canonical state-space variables is one of many 
choices of transformation in the opposite direction. This choice must however be extended 
to allow for prototypes with 1 nm  (subscripts indicate sizes of sub-matrices), 
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The transformations are similar for DT, essentially let  t  and zs . The noise enters 
as process noise  w  in state variables as well as measurement noise  v  in the measured 
quantity. The process noise effectively corresponds to the uncertainty of our model 
(section 3.3), but is expressed differently. Depending on the state variables it may be 
difficult to assign a reasonable model of process noise in any other way than studying the 
result. The measurement noise is physical and observable and therefore much easier to 
estimate. Adding noise in the DT state-space model we finally arrive at the Kalman filter 
equations, 
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3. Applications related to calibration 

The result of a dynamic calibration of a measurement system is difficult to use directly 
(Hessling, 2010a). The performance of the system depends strongly on the variation of the 
signal and has to be calculated for every measured signal. Parts of this calculation can be 
formulated as digital filtering of measured signals. The time-invariant unique filters are then 
synthesized from the calibration result. The filter coefficients represent the calibration result. 
Digital filters are already used in some measurement systems. The novel aspect here is to 
use digital filtering as a method to formulate the calibration result for every measured 
signal. Digital filters will here be used for dynamic correction (section 3.2) and for 
estimating the model uncertainty of this correction (section 3.3). 
The measured signal results from the specific combination of input signal and measurement 
system. The statistical dynamic model of the measurement system will be assumed time-
invariant and linear-in-response, but non-linear-in-parameters. The variable performance is 
due to the time-dependence of the signal and not the system. Of primary interest is to 
correct the measured signal to resemble the physical input of the measurement system as 
much as possible. That is an inverse problem, as it requires the construction of a prototype 
for the inverse system. The uncertainty of the model is transferred to uncertainty of this 
prototype of correction. When applying the correction filter, the uncertainty of the corrected 
signal increases further due to measurement noise. Thus there are two principal sources of 
uncertainty for corrected signals, model uncertainty and noise. For the addressed linear-in-
response systems the measurement noise and the measured signal propagate identically 
through the correction filter. Propagation of measurement noise will not be addressed here 
as it only relates to the correction filter and is elementary (Hessling, 2009). The model 
uncertainty propagates very differently – a perturbation of a dynamic model leads to a non-
trivial perturbation of the corrected signal. 

 
3.1 Example of measurement 
 

3.1.1 Measurement system 
The model of a measurement may be determined from calibration and/or from first principles. 
First principles often suggest structures of the model while the values of the parameters are 
deduced from experimental calibration data by means of system identification (Ljung, 1999; 
Pintelon & Schoukens, 2001). To focus on synthesis of digital filters rather than modeling, a 
strongly simplified model will be used. Mechanical sensors for measuring acceleration, 
pressure, force and torque are often made of a strain-gauge element attached to a flexible 
sensor material. The mechanical construction is well described by two masses separated by a 
damped spring (Crosswy & Kalb, 1970). This results in a simple resonance at frequency Cf  
with relative damping  . Usually the damping is moderate  1  (Moghisi & Squire, 1980) 
giving a complex-conjugated pole pair  *, pp  in the s-plane, 
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A state-space formulation contains two equations, a dynamic state-space equation and a 
static measurement equation. The state-space equation is the ‘engine’ that drives the system 
in response to its input. The measurement equation describes how our quantity of interest is 
related to the state-space variables and the input. This separation makes it possible to use 
virtually any set of [state-space] variables. They may be physical quantities but often are not. 
The key aspect of all sets of variables is that they split the model into several equations 
linear in the differential t  (CT) or displacement   (DT) operator. In CT, 
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The input x , the output y  and the state-space variables u  are all column vectors. Applying 
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This transformation from any linear state-space formulation to the corresponding transfer 
function non-linear in s  is unique. The set of canonical state-space variables is one of many 
choices of transformation in the opposite direction. This choice must however be extended 
to allow for prototypes with 1 nm  (subscripts indicate sizes of sub-matrices), 
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The transformations are similar for DT, essentially let  t  and zs . The noise enters 
as process noise  w  in state variables as well as measurement noise  v  in the measured 
quantity. The process noise effectively corresponds to the uncertainty of our model 
(section 3.3), but is expressed differently. Depending on the state variables it may be 
difficult to assign a reasonable model of process noise in any other way than studying the 
result. The measurement noise is physical and observable and therefore much easier to 
estimate. Adding noise in the DT state-space model we finally arrive at the Kalman filter 
equations, 
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sensor material. The mechanical construction is well described by two masses separated by a 
damped spring (Crosswy & Kalb, 1970). This results in a simple resonance at frequency Cf  
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The mean   and the covariance matrix for the parameters are given in Table 1. The 
complex-valued frequency response is given by  iH . The first parameterization is made 
in K  and the roots, or poles  p  of the denominator polynomial, rather than its coefficients. 
This factorization makes the models less non-linear-in-parameters. The high sensitivity to 
variations in coefficients would make the estimation of measurement uncertainty 
(section 3.3) more difficult. These problems increase rapidly with the order of the model. 
The second parameterization is made in residues  r  and poles. All models are linear in 
residues. Exploring different parameterizations is strongly encouraged as that may improve 
and simplify the analysis significantly. Since the input as well as output signal of the 
measurement system is real-valued, poles and zeros are either real, or complex-conjugated 
in pairs. This physical constraint must be fully respected in all steps of the analysis. The 
simple transducer model has only one complex-conjugated pole pair but that is sufficient for 
illustrating the various methods. The general case with an arbitrary number of poles and 
zeros is discussed in recent publications (Hessling, 2008a; 2009). 
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Table 1. Mean values and covariance matrix of the parameters of the dynamic model 
(Eq. 11), signal-to-noise ratio S/N  at zero frequency, and chosen sampling rate Sf . 

 
3.1.2 Input and output signal 
The performance of the measurement system is different for different physical input signals. 
For illustration it is sufficient to study only one input signal. In order to obtain visible 
effects, its bandwidth is chosen high. Its regularity or differentiability should also be low as 
that implies a high sensitivity to the proposed filtering. The triangular pulse in Fig. 2 fulfills 
these requirements. The distortion is due to both amplitude and phase imperfections of the 
frequency response of the system within its bandwidth, as well as a limited bandwidth. 
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Fig. 2. Input and output signal of the measurement system (left) and magnitudes of their 
spectra (right). The arrow (right) indicates the signal-to-noise ratio  NS  of the input signal. 
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3.2 Dynamic correction 
Correction of measured signals using knowledge of the measurement system (Pintelon 
et. al., 1990; Hessling, 2010a) is practiced in many fields of science and engineering. 
Surprisingly, dynamic correction is not yet generally offered in the context of calibrations, 
despite that static corrections in principle are required (ISO GUM, 1993). Dynamic correction 
will here refer to reduction of all kinds of dynamic imperfections of the measurement. The 
digital correction filter essentially propagates measured signals backwards through a 
mathematical model of the system to their physical origin. Backwards propagation can be 
viewed as either an inverse or reversed propagation. Not surprisingly, reversed filtering is 
sometimes useful when realizing correction filters (Hessling, 2008a). 
Correction requires an estimate of the inverse model of the measurement. In the time 
domain, it is a fairly complex operation to find the inverse differential equation. For a model 
parameterized in poles and zeros of a transfer function it is trivial. The inverse is then found 
by exchanging poles and zeros. A pole (zero) of the measurement system is then eliminated 
or annihilated with its ‘conjugate’ zero (pole) of the correction filter. 
A generic and unavoidable problem for all methods of dynamic correction is due to the 
finite bandwidth of the measurement system. The bandwidth of the system and the level of 
measurement noise set a definite limit to which extent any signal may be corrected. The high 
frequency amplification of the inverse system is virtually without bound. Therefore, some 
kind of low-pass ‘noise’ filters must always be included in a correction. These reduce the 
total gain and hence the level of noise to a predefined acceptable level. Incidentally, if the 
sampling rate is low enough, the bandwidth set by the Nyquist frequency may be sufficient 
to limit the gain of the correction filter. The noise filter is preferably chosen ‘optimal’ to 
balance measurement error and noise in the most relevant way. To determine the degree of 
optimality requires a measure of the error, or the deviation between the corrected signal and 
the input signal of the measurement system. The time delay and the dynamic error are 
usually distinguished as different causes for deviations between signals (study Fig. 2, left). 
A unique definition of the time delay is therefore also required (Hessling, 2006). Since the 
error is different for different measured signals, so is also the optimal correction. 
When dynamic correction fails it is usually either due to neglect of noise amplification, or 
insufficient model quality. On one hand, the required model quality may be 
underestimated. A model with almost perfect match of only the amplitude  iH  of the 
frequency response may result in a ‘correction’ which increases the error! The phase 

 iHarg  is equally important as the magnitude (Ekstrom, 1972; Hessling, 2006): A 
correction applied with the wrong sign doubles instead of eliminates the error. On the other 
hand, the required model quality should not be overestimated. As long as the error is 
mainly due to bandwidth limitations, the model quality within the band is irrelevant. The 
best strategy is then to optimize the noise filter or regularization technique to be able to dig 
up the last piece of high frequency information from the measured signal 
(Hale & Dienstfrey, 2010). 
The proposed pragmatic design (Hessling, 2008a) inspired by Wiener de-convolution 
(Wiener, 1949) will here be applied for determining the noise filter. To develop the method 
further, the noise filter will be determined for the actual input signal (Fig. 2). The correction 
filter is then not only applied to but also uniquely synthesized for every measured signal. The 
proposed optimal noise filter has a cross-over frequency Nf  determined from the frequency 
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The mean   and the covariance matrix for the parameters are given in Table 1. The 
complex-valued frequency response is given by  iH . The first parameterization is made 
in K  and the roots, or poles  p  of the denominator polynomial, rather than its coefficients. 
This factorization makes the models less non-linear-in-parameters. The high sensitivity to 
variations in coefficients would make the estimation of measurement uncertainty 
(section 3.3) more difficult. These problems increase rapidly with the order of the model. 
The second parameterization is made in residues  r  and poles. All models are linear in 
residues. Exploring different parameterizations is strongly encouraged as that may improve 
and simplify the analysis significantly. Since the input as well as output signal of the 
measurement system is real-valued, poles and zeros are either real, or complex-conjugated 
in pairs. This physical constraint must be fully respected in all steps of the analysis. The 
simple transducer model has only one complex-conjugated pole pair but that is sufficient for 
illustrating the various methods. The general case with an arbitrary number of poles and 
zeros is discussed in recent publications (Hessling, 2008a; 2009). 
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Table 1. Mean values and covariance matrix of the parameters of the dynamic model 
(Eq. 11), signal-to-noise ratio S/N  at zero frequency, and chosen sampling rate Sf . 

 
3.1.2 Input and output signal 
The performance of the measurement system is different for different physical input signals. 
For illustration it is sufficient to study only one input signal. In order to obtain visible 
effects, its bandwidth is chosen high. Its regularity or differentiability should also be low as 
that implies a high sensitivity to the proposed filtering. The triangular pulse in Fig. 2 fulfills 
these requirements. The distortion is due to both amplitude and phase imperfections of the 
frequency response of the system within its bandwidth, as well as a limited bandwidth. 
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Fig. 2. Input and output signal of the measurement system (left) and magnitudes of their 
spectra (right). The arrow (right) indicates the signal-to-noise ratio  NS  of the input signal. 
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3.2 Dynamic correction 
Correction of measured signals using knowledge of the measurement system (Pintelon 
et. al., 1990; Hessling, 2010a) is practiced in many fields of science and engineering. 
Surprisingly, dynamic correction is not yet generally offered in the context of calibrations, 
despite that static corrections in principle are required (ISO GUM, 1993). Dynamic correction 
will here refer to reduction of all kinds of dynamic imperfections of the measurement. The 
digital correction filter essentially propagates measured signals backwards through a 
mathematical model of the system to their physical origin. Backwards propagation can be 
viewed as either an inverse or reversed propagation. Not surprisingly, reversed filtering is 
sometimes useful when realizing correction filters (Hessling, 2008a). 
Correction requires an estimate of the inverse model of the measurement. In the time 
domain, it is a fairly complex operation to find the inverse differential equation. For a model 
parameterized in poles and zeros of a transfer function it is trivial. The inverse is then found 
by exchanging poles and zeros. A pole (zero) of the measurement system is then eliminated 
or annihilated with its ‘conjugate’ zero (pole) of the correction filter. 
A generic and unavoidable problem for all methods of dynamic correction is due to the 
finite bandwidth of the measurement system. The bandwidth of the system and the level of 
measurement noise set a definite limit to which extent any signal may be corrected. The high 
frequency amplification of the inverse system is virtually without bound. Therefore, some 
kind of low-pass ‘noise’ filters must always be included in a correction. These reduce the 
total gain and hence the level of noise to a predefined acceptable level. Incidentally, if the 
sampling rate is low enough, the bandwidth set by the Nyquist frequency may be sufficient 
to limit the gain of the correction filter. The noise filter is preferably chosen ‘optimal’ to 
balance measurement error and noise in the most relevant way. To determine the degree of 
optimality requires a measure of the error, or the deviation between the corrected signal and 
the input signal of the measurement system. The time delay and the dynamic error are 
usually distinguished as different causes for deviations between signals (study Fig. 2, left). 
A unique definition of the time delay is therefore also required (Hessling, 2006). Since the 
error is different for different measured signals, so is also the optimal correction. 
When dynamic correction fails it is usually either due to neglect of noise amplification, or 
insufficient model quality. On one hand, the required model quality may be 
underestimated. A model with almost perfect match of only the amplitude  iH  of the 
frequency response may result in a ‘correction’ which increases the error! The phase 

 iHarg  is equally important as the magnitude (Ekstrom, 1972; Hessling, 2006): A 
correction applied with the wrong sign doubles instead of eliminates the error. On the other 
hand, the required model quality should not be overestimated. As long as the error is 
mainly due to bandwidth limitations, the model quality within the band is irrelevant. The 
best strategy is then to optimize the noise filter or regularization technique to be able to dig 
up the last piece of high frequency information from the measured signal 
(Hale & Dienstfrey, 2010). 
The proposed pragmatic design (Hessling, 2008a) inspired by Wiener de-convolution 
(Wiener, 1949) will here be applied for determining the noise filter. To develop the method 
further, the noise filter will be determined for the actual input signal (Fig. 2). The correction 
filter is then not only applied to but also uniquely synthesized for every measured signal. The 
proposed optimal noise filter has a cross-over frequency Nf  determined from the frequency 
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where the system amplification has decayed to the inverse of the signal-to-noise ratio  NS . 
The ratio-NS  oscillates for the triangular input signal. To find the desired cross-over it is 
thus necessary to estimate the envelope of the ratio-NS , as shown in Fig. 3 (left) below. A 
property of the noise filter which is equally important as the cross-over is the asymptotic 
fall-off rate in the frequency domain (Hessling, 2006). The proposed noise filter is suggested 
to be applied symmetrically in both directions of time to cancel its phase. In that case, the 
fall-off rate of the noise filter and the measurement system should be the same. The fall-off 
rates of the correction filter with the noise filter applied twice and the measurement system 
are then the same. For the transducer, the noise filter should be of second order. Other 
details of the amplitude fall-off were ignored, as they are beyond reach for optimal 
correction in practice. 
The prototype for correction was constructed by annihilating the poles of the model (Eq. 11) 
with zeros. This CT prototype was then sampled to DT using the simple exponential 
mapping (section 2.2). The poles and zeros of the correction filter are shown in Fig. 5 (top 
left). The impulse response (Fig. 5, bottom left) of the correction filter is non-causal since 
time-reversed noise filtering was adopted. The correction was carried out by filtering the 
output signal of the measurement system to find the corrected signal Cx  in Fig. 3 (right). 

0 1 2 3 4
−50

−40

−30

−20

−10

0

10

f/f
C

(d
B

)

f
N

−S/N
|H|

 
Fig. 3. Left: Signal to noise ratio  NS  for the input signal (Fig. 2) and amplification H  of 
the measurement system, for determining the cut-off frequency Nf  of the noise filter. Right: 
The output and the corrected output. The input signal is indicated (displaced for clarity). 

 
3.3 Measurement uncertainty 
The primary indicator of measurement quality is measurement uncertainty. It is usually 
expressed as a confidence interval for the measurement result. How to find the confidence 
interval from a probability density function (pdf) of the uncertain parameters that influence 
the quantity of interest is suggested in the Guide to the Expression of Uncertainty 
(ISO GUM, 1993). It is formulated for static measurements with a time-independent 
measurement equation. The dynamic measurements of interest here is beyond its original 
scope. Nevertheless, the guide is based on a standard perturbation analysis of first order 
which may be generalized to dynamic conditions. The instantaneous analysis is then 
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translated into filtering operations. The uncertainty of the parameters of the dynamic model 
and the measurement noise contribute to the dynamic measurement uncertainty. Only 
propagation of model uncertainty will be discussed here. 
The linearity of a measurement system is a common source of misunderstanding. Any 
dynamic system h  may be linear-in-response (LR), or linear-in-parameters (LP). LR does not 
imply that the output signal is proportional to the input signal. Instead it means that the 
response to a sum of signals 21, yy  equals the sum of the responses of the signals, or 
     qyhqyhqyyh ,,, 2121   , for all  , . Analogously, a model LP would imply 

that      2121 ,,, qyhqyhqqyh   . A model h  equal to a sum of LP models kh , 

 khh , would then not be classified LP. Nevertheless, such models are normally 
considered LP as they are linear expansions. Therefore, any model that can be expressed as a 
sum of LP models will be considered LP. 
To be a useful measurement system we normally require high linearity in response. 
Conventional linear digital filtering requires LR. A lot of effort is therefore made by 
manufacturers to fulfill this expectation and by calibrating parties to verify it. LR is a 
physical property of the system completely beyond control for the user, as well as the 
calibrator. In contrast, LP is determined by the model, which is partly chosen with the 
parameterization. It is for instance possible to exchange non-linearity in zeros with linearity 
in residues (section 3.1.1). 
The non-linear propagation of measurement uncertainty by means of linear digital filtering 
in section 3.3.2 refers to measurement systems non-linear-in-parameters but linear-in-
response. The presented method is an alternative to the non-degenerate unscented method 
(Hessling et. al., 2010b). At present there is no other published or established and consistent 
method used in calibrations for this type of non-linear propagation of measurement 
uncertainty, beyond inefficient Monte-Carlo simulations. For linear propagation of dynamic 
measurement uncertainty with digital filters, there is only one original publication 
(Hessling, 2009). In this reference, a complete description of estimation of measurement 
uncertainty is given. 

 
3.3.1 Linear propagation using sensitivities 
The established calculation of uncertainty (ISO GUM, 1993) follows the standard procedure 
of first order perturbation analysis adopted in most fields of science and engineering. 
Consistent application of the guide is strictly limited to linearization of the model equation 
(Hessling et. al., 2010b). Here, the analysis translates into linearization of the transfer 
function or impulse response in uncertain parameters. The derivation will closely follow a 
recent presentation (Hessling, 2010a). For correction of the mechanical transducer, 
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The pole pair *, pp   of the original measurement system (section 3.1.1) is here a pair of zeros 
of the CT prototype 1H  of correction (section 3.2). The variations *, pp   are completely 
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where the system amplification has decayed to the inverse of the signal-to-noise ratio  NS . 
The ratio-NS  oscillates for the triangular input signal. To find the desired cross-over it is 
thus necessary to estimate the envelope of the ratio-NS , as shown in Fig. 3 (left) below. A 
property of the noise filter which is equally important as the cross-over is the asymptotic 
fall-off rate in the frequency domain (Hessling, 2006). The proposed noise filter is suggested 
to be applied symmetrically in both directions of time to cancel its phase. In that case, the 
fall-off rate of the noise filter and the measurement system should be the same. The fall-off 
rates of the correction filter with the noise filter applied twice and the measurement system 
are then the same. For the transducer, the noise filter should be of second order. Other 
details of the amplitude fall-off were ignored, as they are beyond reach for optimal 
correction in practice. 
The prototype for correction was constructed by annihilating the poles of the model (Eq. 11) 
with zeros. This CT prototype was then sampled to DT using the simple exponential 
mapping (section 2.2). The poles and zeros of the correction filter are shown in Fig. 5 (top 
left). The impulse response (Fig. 5, bottom left) of the correction filter is non-causal since 
time-reversed noise filtering was adopted. The correction was carried out by filtering the 
output signal of the measurement system to find the corrected signal Cx  in Fig. 3 (right). 
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Fig. 3. Left: Signal to noise ratio  NS  for the input signal (Fig. 2) and amplification H  of 
the measurement system, for determining the cut-off frequency Nf  of the noise filter. Right: 
The output and the corrected output. The input signal is indicated (displaced for clarity). 
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translated into filtering operations. The uncertainty of the parameters of the dynamic model 
and the measurement noise contribute to the dynamic measurement uncertainty. Only 
propagation of model uncertainty will be discussed here. 
The linearity of a measurement system is a common source of misunderstanding. Any 
dynamic system h  may be linear-in-response (LR), or linear-in-parameters (LP). LR does not 
imply that the output signal is proportional to the input signal. Instead it means that the 
response to a sum of signals 21, yy  equals the sum of the responses of the signals, or 
     qyhqyhqyyh ,,, 2121   , for all  , . Analogously, a model LP would imply 
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 khh , would then not be classified LP. Nevertheless, such models are normally 
considered LP as they are linear expansions. Therefore, any model that can be expressed as a 
sum of LP models will be considered LP. 
To be a useful measurement system we normally require high linearity in response. 
Conventional linear digital filtering requires LR. A lot of effort is therefore made by 
manufacturers to fulfill this expectation and by calibrating parties to verify it. LR is a 
physical property of the system completely beyond control for the user, as well as the 
calibrator. In contrast, LP is determined by the model, which is partly chosen with the 
parameterization. It is for instance possible to exchange non-linearity in zeros with linearity 
in residues (section 3.1.1). 
The non-linear propagation of measurement uncertainty by means of linear digital filtering 
in section 3.3.2 refers to measurement systems non-linear-in-parameters but linear-in-
response. The presented method is an alternative to the non-degenerate unscented method 
(Hessling et. al., 2010b). At present there is no other published or established and consistent 
method used in calibrations for this type of non-linear propagation of measurement 
uncertainty, beyond inefficient Monte-Carlo simulations. For linear propagation of dynamic 
measurement uncertainty with digital filters, there is only one original publication 
(Hessling, 2009). In this reference, a complete description of estimation of measurement 
uncertainty is given. 

 
3.3.1 Linear propagation using sensitivities 
The established calculation of uncertainty (ISO GUM, 1993) follows the standard procedure 
of first order perturbation analysis adopted in most fields of science and engineering. 
Consistent application of the guide is strictly limited to linearization of the model equation 
(Hessling et. al., 2010b). Here, the analysis translates into linearization of the transfer 
function or impulse response in uncertain parameters. The derivation will closely follow a 
recent presentation (Hessling, 2010a). For correction of the mechanical transducer, 
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of the CT prototype 1H  of correction (section 3.2). The variations *, pp   are completely 
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correlated. Rather than modeling this correlation it is simpler to change variables. 
Evaluating the derivatives (Hessling, 2009), 
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If the dynamic sensitivity systems       sEsEE ppK

1222 ,,  operate on the corrected signal  txC  

it will result in three time-dependent sensitivity signals         ttt ppK
1222 ,,   describing the 

sensitivity to the stochastic quantities 21,,  KK . The latter quantities are written as 
vector scalar products or projections in the complex s-plane between the relative fluctuation 

pp   and powers of the normalized pole vector pp , as illustrated in Fig. 4. 
 

 
Fig. 4. Illustration of the relative variation   and associated projections 21,  in the s-plane. 
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variation of the correction will be given by  TT KK 21,   . The auto-
correlation function of the signal   resulting from the uncertainty of the model is found by 
squaring and calculating the statistical expectation   over the variations of the parameters, 
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The matrix T  of expectation values of squared parameter variations is usually referred 

to as the covariance matrix  21,,cov K . In Table 1 it was given in the parameters 
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Table 2. Covariance matrix for the static amplification and the two projections,  21,, K , 
and transformation matrix T . The covariance     ppK Im,Re,cov  is given in Table 1. 
 
The measurement uncertainty is given by the half-width Px  of the confidence interval of the 
measurement. This width can be calculated as the standard deviation at each time instant, 
multiplied by an estimated coverage factor Pk  (ISO GUM, 1993). This coverage factor is 
difficult to determine accurately for dynamic measurements, since the type of distribution 
varies with time. The standard deviation is obtained as the square root of the variance, i.e. 
the square root of the auto-correlation for zero lag, 
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The sensitivity signals   can be calculated with digital filtering. Sensitivity filters are found 
by sampling the CT sensitivity systems       sEsEE ppK

1222 ,, . The noise filter is a necessity 
rather than a part of the actual correction and gives rise to a systematic error. The 
uncertainty of the noise filtering is thus the same as the uncertainty of this systematic error. 
That is of no interest without an accurate estimate of the systematic error. Estimating this 
error is very difficult since much of the required information is unconditionally lost in the 
measurement due to bandwidth limitations. No method has been presented other than a 
very rough universal conservative estimate (Hessling, 2006). The uncertainty of the error is 
much less than the accuracy of this estimate and therefore completely irrelevant. 
The gain of the sensitivity filters is bounded at all frequencies and no additional noise filters 
are required. The sensitivity filters differ from the correction filter in numerous ways: As the 
complexity of the model increases, the types of sensitivity filter remain but their number 
increases. There are only three types of sensitivity filters, one for real-valued and the same 
pair for complex-valued poles and zeros. For the transducer, the correction filter and the two 
sensitivity filters were sampled with the same exponential mapping (section 2.2). The 
resulting impulse responses and z-plane plots of all filters are shown in Fig. 5.  
Filtering the corrected signal with the sensitivity filters      zEzEE ppK

1222 ,,  resulted in the 

sensitivities        ttt ppK
1222 ,,   in Fig. 6 (left). The time-dependent half-width of the 

confidence interval for the correction in Fig. 6 (right) was then found from Eq. 15, using the 
covariance matrix in Table 2 and 2Pk  for an assumed normal distributed correction. 
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correlated. Rather than modeling this correlation it is simpler to change variables. 
Evaluating the derivatives (Hessling, 2009), 
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Table 2. Covariance matrix for the static amplification and the two projections,  21,, K , 
and transformation matrix T . The covariance     ppK Im,Re,cov  is given in Table 1. 
 
The measurement uncertainty is given by the half-width Px  of the confidence interval of the 
measurement. This width can be calculated as the standard deviation at each time instant, 
multiplied by an estimated coverage factor Pk  (ISO GUM, 1993). This coverage factor is 
difficult to determine accurately for dynamic measurements, since the type of distribution 
varies with time. The standard deviation is obtained as the square root of the variance, i.e. 
the square root of the auto-correlation for zero lag, 
 

      21,,covdiagdiag Kkku T
P

T
P  . (15) 

 
The sensitivity signals   can be calculated with digital filtering. Sensitivity filters are found 
by sampling the CT sensitivity systems       sEsEE ppK

1222 ,, . The noise filter is a necessity 
rather than a part of the actual correction and gives rise to a systematic error. The 
uncertainty of the noise filtering is thus the same as the uncertainty of this systematic error. 
That is of no interest without an accurate estimate of the systematic error. Estimating this 
error is very difficult since much of the required information is unconditionally lost in the 
measurement due to bandwidth limitations. No method has been presented other than a 
very rough universal conservative estimate (Hessling, 2006). The uncertainty of the error is 
much less than the accuracy of this estimate and therefore completely irrelevant. 
The gain of the sensitivity filters is bounded at all frequencies and no additional noise filters 
are required. The sensitivity filters differ from the correction filter in numerous ways: As the 
complexity of the model increases, the types of sensitivity filter remain but their number 
increases. There are only three types of sensitivity filters, one for real-valued and the same 
pair for complex-valued poles and zeros. For the transducer, the correction filter and the two 
sensitivity filters were sampled with the same exponential mapping (section 2.2). The 
resulting impulse responses and z-plane plots of all filters are shown in Fig. 5.  
Filtering the corrected signal with the sensitivity filters      zEzEE ppK

1222 ,,  resulted in the 

sensitivities        ttt ppK
1222 ,,   in Fig. 6 (left). The time-dependent half-width of the 

confidence interval for the correction in Fig. 6 (right) was then found from Eq. 15, using the 
covariance matrix in Table 2 and 2Pk  for an assumed normal distributed correction. 
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Fig. 5. Poles (x) and zeros (o) (top) and impulse responses (bottom) of the correction  zg 1  
(left) and digital sensitivity filters    zEp

22  (middle) and   zEp
12  (right) for the two 

projections 1  and 2 , respectively. 
 

−1 0 1 2 3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t*f
C

ξ
K

×(−0.4)

ξ
p
 (22)

ξ
p
 (12)

 
Fig. 6. Left: Sensitivity signals   for the amplification K  and the two pole projections 

21, , obtained by digital filtering of the corrected output shown in Fig. 3 (right).  
Right: Resulting confidence interval half-width Px . For comparison, the rescaled input 
signal is shown (dotted). 
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3.3.2 Non-linear propagation utilizing unscented binary sampling  
The uncertainty of the correction can be estimated by simulating a representative set or 
ensemble of different corrections of the same measured signal. The probability density 
function (pdf) of the parameters is then sampled to form a finite number of ’typical’ sets of 
parameters: The multivariate pdf   kqf  for all parameters  kq  is substituted with an 

ensemble of m  sets of n  samples   vkq̂ , where mv ,2,1  denotes the different members 
of the ensemble and nk 2,1  the different parameters of the model. To be most relevant, 
these sets should preserve as many statistical moments as possible. Expressed in deviations 
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The sampling of the pdf is indicated by ̂ . In contrast to signals and systems, pdfs are not 
physical and not observable. That makes sampling of pdfs even less evident than sampling 
of systems (section 2.2). Only a few of many possible methods have so far been proposed. 
Perhaps the most common way to generate an ensemble   vkq̂  is to employ random 
generators with the same statistical properties as the pdf to be sampled. With a sufficiently 
large ensemble, typically 610~m , all relevant moments of pdfs of independent parameters 
may be accurately represented. This random sampling technique is the well known Monte 
Carlo (MC) simulation method (Metropolis, 1949; Rubenstein, 2007). It has been extensively 
used for many decades in virtually all fields of science where statistical models are used. 
The efficiency of MC is low: Its outstanding simplicity of application is paid with an equally 
outstanding excess of numerical simulations. It thus relies heavily upon technological 
achievements in computing and synthesis of good random generators. Modeling of 
dependent parameters provides a challenge though. With a linear change of variables, 
ensembles with any second moment or covariance may be generated from independent 
generators. It is generally difficult to include any higher order moment in the MC method in 
any other way than directly construct random generators with relevant dependences. 
Another constraint is that the models must not be numerically demanding as the number of 
simulations is just as large as the size of the ensemble  m . For dynamic measurements this 
is an essential limitation since every realized measurement requires a full dynamic 
simulation of a differential equation over the entire time epoch. For a calibration service the 
limitation is even stronger as the computers for evaluation belongs to the customer and not 
the calibrator. A fairly low computing power must therefore be allowed. There are thus 
many reasons to search for more effective sampling strategies.  
An alternative to random sampling is to construct the set   vkq̂  from the given statistical 
moments (Eq. 16) with a deterministic method. The first versions of this type of unscented 
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Fig. 6. Left: Sensitivity signals   for the amplification K  and the two pole projections 

21, , obtained by digital filtering of the corrected output shown in Fig. 3 (right).  
Right: Resulting confidence interval half-width Px . For comparison, the rescaled input 
signal is shown (dotted). 
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3.3.2 Non-linear propagation utilizing unscented binary sampling  
The uncertainty of the correction can be estimated by simulating a representative set or 
ensemble of different corrections of the same measured signal. The probability density 
function (pdf) of the parameters is then sampled to form a finite number of ’typical’ sets of 
parameters: The multivariate pdf   kqf  for all parameters  kq  is substituted with an 

ensemble of m  sets of n  samples   vkq̂ , where mv ,2,1  denotes the different members 
of the ensemble and nk 2,1  the different parameters of the model. To be most relevant, 
these sets should preserve as many statistical moments as possible. Expressed in deviations 
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The sampling of the pdf is indicated by ̂ . In contrast to signals and systems, pdfs are not 
physical and not observable. That makes sampling of pdfs even less evident than sampling 
of systems (section 2.2). Only a few of many possible methods have so far been proposed. 
Perhaps the most common way to generate an ensemble   vkq̂  is to employ random 
generators with the same statistical properties as the pdf to be sampled. With a sufficiently 
large ensemble, typically 610~m , all relevant moments of pdfs of independent parameters 
may be accurately represented. This random sampling technique is the well known Monte 
Carlo (MC) simulation method (Metropolis, 1949; Rubenstein, 2007). It has been extensively 
used for many decades in virtually all fields of science where statistical models are used. 
The efficiency of MC is low: Its outstanding simplicity of application is paid with an equally 
outstanding excess of numerical simulations. It thus relies heavily upon technological 
achievements in computing and synthesis of good random generators. Modeling of 
dependent parameters provides a challenge though. With a linear change of variables, 
ensembles with any second moment or covariance may be generated from independent 
generators. It is generally difficult to include any higher order moment in the MC method in 
any other way than directly construct random generators with relevant dependences. 
Another constraint is that the models must not be numerically demanding as the number of 
simulations is just as large as the size of the ensemble  m . For dynamic measurements this 
is an essential limitation since every realized measurement requires a full dynamic 
simulation of a differential equation over the entire time epoch. For a calibration service the 
limitation is even stronger as the computers for evaluation belongs to the customer and not 
the calibrator. A fairly low computing power must therefore be allowed. There are thus 
many reasons to search for more effective sampling strategies.  
An alternative to random sampling is to construct the set   vkq̂  from the given statistical 
moments (Eq. 16) with a deterministic method. The first versions of this type of unscented 
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sampling techniques appeared around 15 years ago and was proposed by Simon Julier and 
Jeffrey Uhlmann (Julier, 1995) for use in Kalman filters (Julier, 2004). The name unscented 
means without smell or bias and refers to the fact that no approximation of the deterministic 
model is made. The number of realizations is much lower and the efficiency correspondingly 
higher for unscented than for random sampling. The unavoidable cost is a lower statistical 
accuracy as fewer moments are correctly described. The realized vectors of parameters 

      vnvv qqq ˆˆˆ 21   were called sigma-points since they were constructed to correctly 
reproduce the second moments. The required minimum number of such points, or samples 
depends on how many moments one wants to correctly describe. The actual number of 
samples is often larger and depends on the sampling strategy. There is no general approach 
for deterministic sampling of pdf corresponding to the use of random generators for random 
sampling. The class of unscented sampling techniques is very large. It is all up to your 
creativity to find a method which reproduce as many moments as possible with an acceptable 
number of sigma-points. For correct reproduction of the first and second moment, the simplex 
set of sigma-points (Julier, 2004, App. III) utilizes the minimum number of 1n  samples 
while the standard unscented Kalman filter use n2  samples (Simon, 2006). The minimum 
number of samples is given by the number of degrees-of-freedom (NDOF). For the first and 
second moment, n1NDOF . The sampling method that will be presented here is close to 
the standard UKF, apart from a few important differences: 

 The amplification of the standard deviation with 1n  in the standard UKF (see 
below) is strongly undesirable since parameters may be sampled outside their 
region of possible variation, which is prohibited. For instance, poles must remain in 
the left hand side of the s-plane to preserve stability. The factor n  may violate 
such critical physical constraints.  

 The confidence interval of the measurement is of primary interest in calibrations, 
rather than the covariance as in the UKF. For non-linear propagation of uncertainty 
it is crucial to expand the sampled parameters to the desired confidence level, and 
not the result of the simulation. Expanded sigma-points will be denoted 
lambda-points. This expansion makes the first aspect even more critical. 

 
The standard UKF samples sigma-points by calculating a square root of the covariance 
matrix. A square root is easily found if the covariance matrix first is transformed to become 
diagonal. To simplify notation, let  Tnqqqq 21 . It is a widely practiced standard 
method (Matlab, m-function ‘eig’) to determine a unitary transformation U , which makes 
the covariance matrix diagonal, 
 

      2 2 2
1 2 ncov cov diag , 1T T TU q U q U UU U U       . (17) 

 

The first moments (Eq. 16) will vanish if the lambda-points    svvq ,ˆ   are sampled 
symmetrically around the mean q . Expressing the sampled variations  vq̂  in the 

diagonal basis and expanding with coverage factors  v
Pk , 

 

        smvqUksq vTv
P

sv ,22,1,ˆ,  . (18) 
 

 

The column vectors  vq̂  of variations are for convenience collected into columns of a 
matrix  . The condition to reproduce the second moment in Eq. 16 then reads, 
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2diag 2
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2
1   . (19) 

 

Clearly,  nm  21diag2    nm 2  is a valid but as will be discussed, not a 
unique solution. Except for the unitary transformation, that corresponds to the standard 
UKF (Simon, 2006, chapter 14.2). The factor 2m  may result in prohibited lambda-points 
and appeared as a consequence of normalization. This square root is by no means unique:  
Any ‘half’-unitary1 transformation 1,~

 TVVV  yields an equally acceptable square root 

matrix since TTTT VV 
~~ . This degree of freedom will be utilized to eliminate the 

factor 2m . Note that 1TVV  does not imply that V  must be a square matrix, or nm 2 . 
To arrive at an arbitrary covariance matrix though, the rank of V  must be at least the same 
as for  qUcov , or nm 2 . Since the ‘excitation’ of the different parameters is controlled by 
the matrix V  it will be called the excitation matrix. The lambda-points are given by, 
 

               VUmUUqUUksq TmvTTv
P

sv 2,cov 221,   .     (20) 

 

Here,  v  is column v  of the scaled excitation matrix, expressed in the original basis of 
correlated coordinates q . The main purpose of applying the unitary transformation or 
rotation U  as well as using the excitation matrix V  is to find physically allowed lambda-
points in a simple way. 
After the pdf has been sampled into lambda-points   , the confidence interval 

        txtxtxtx PCPC  ,  of the corrected signal  tx̂  is evaluated as, 
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The impulse response of the digital correction filter is here denoted  tg ,1   and y  is the 
measured signal, while the filtering operation is described by the convolution   
(section 3.2). The auto-correlation function of the measurement may be similarly obtained 
from the associated sigma-points (let   1v

Pk  and    in Eqs. 20-21), 
 

              


  txtxtxtxtxtx CC ,ˆ,ˆ . (22) 
 
 

                                                                 
1 The matrix is not unitary since that also requires 1VV T . 
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 TVVV  yields an equally acceptable square root 

matrix since TTTT VV 
~~ . This degree of freedom will be utilized to eliminate the 

factor 2m . Note that 1TVV  does not imply that V  must be a square matrix, or nm 2 . 
To arrive at an arbitrary covariance matrix though, the rank of V  must be at least the same 
as for  qUcov , or nm 2 . Since the ‘excitation’ of the different parameters is controlled by 
the matrix V  it will be called the excitation matrix. The lambda-points are given by, 
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Here,  v  is column v  of the scaled excitation matrix, expressed in the original basis of 
correlated coordinates q . The main purpose of applying the unitary transformation or 
rotation U  as well as using the excitation matrix V  is to find physically allowed lambda-
points in a simple way. 
After the pdf has been sampled into lambda-points   , the confidence interval 
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The impulse response of the digital correction filter is here denoted  tg ,1   and y  is the 
measured signal, while the filtering operation is described by the convolution   
(section 3.2). The auto-correlation function of the measurement may be similarly obtained 
from the associated sigma-points (let   1v

Pk  and    in Eqs. 20-21), 
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  txtxtxtxtxtx CC ,ˆ,ˆ . (22) 
 
 

                                                                 
1 The matrix is not unitary since that also requires 1VV T . 
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As a matter of fact, it is simple to evaluate all statistical moments of the correction, 
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Consistency however, requires at least as many moments of the sampled parameters to 
agree with the underlying pdf (Eq. 16). It is no coincidence that for propagating the 
covariance of the parameters to the correction, the mean and the covariance of the sampled 
parameters were correctly described. Thus, to propagate higher order moments the 
sampling strategy needs to be further improved. 
The factor 2m  may be extinguished by exciting all uncertain parameters, i.e. filling all 
entries of V  with elements of unit magnitude, but with different signs chosen to obtain 
orthogonal rows. This will lead to nm 2  lambda-points instead of nm 2 . Since the 
lambda-points will represent all binary combinations, this sampling algorithm will be called 
the method of unscented binary sampling (Hessling, 2010c). All lambda-points will be allowed 
since the scaling factor 2m  will disappear with the normalization of V . The combined 
excitation of several parameters may nevertheless not be statistically allowed. This subtlety 
is not applicable within the current second moment approximation of sampling and can be 
ignored. The rapid increase in the number of lambda-points for large n  is indeed a high 
price to pay. For dynamic measurements this is worth paying for as prohibited lambda-
points may even result in unstable and/or un-physical simulations! In practice, the number 
of parameters is usually rather low. It may also be possible to remove a significant number 
of samples. The only requirements are that the rank of V  is sufficient  nm 2 , and that the 
half-unitary condition  1TVV  can be met. 
For the mechanical transducer, there are three uncertain parameters, the amplification and 
the real and imaginary parts of the pole pair (    ppK Im,Re, ). The full binary excitation 
matrix is for three parameters given by, 
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Unscented binary sampling thus resulted in 823 m  ‘binary’ lambda-points, or digital 
correction filters illustrated in Fig. 7 (top left). Applying these filters to the measured signal 
yielded eight corrected signals, see Fig. 7 (top right). The statistical evaluation at every 
instant of time (Eq. 21) resulted in the confidence interval of the correction displayed in 
Fig. 7 (bottom). The coverage factors were assumed to be equal and represent normal 
distributed parameters  2Pk . 
The simplicity of unscented propagation is striking. The uncertainty of correction is found 
by filtering measured signals with a ‘typical’ set of correction filter(-s). An already 
implemented dynamic correction (Bruel&Kjaer, 2006) can thus easily be parallelized to also 
find its time-dependent uncertainty, which is unique for every measured signal. 
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Fig. 7. Top left: Poles and zeros of the eight sampled digital correction filters, excluding the 
fixed noise filter. The static gains    are displayed on the real z-axis (close to 1z ). 
Top right: The variation of all corrections from their mean. Bottom: Center Cx  (left) and 
half-width Px  (right) of the confidence interval for the correction. The (rescaled/displaced) 
input signal of the measurement system is shown (dotted) for comparison. 

 
3.3.3 Comparison of methods 
The two proposed methods in sections 3.3.1 and 3.3.2 for estimating the model uncertainty 
are equivalent and may be compared. The correct confidence interval is not known but can 
be estimated by means of computationally expensive random sampling or Monte Carlo 
simulations (Rubenstein, 2007). The lambda-points are then substituted with a much larger 
ensemble generated by random sampling. The errors of the estimated confidence interval of 
the correction were found to be different for the two methods, see Fig. 8. 
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As a matter of fact, it is simple to evaluate all statistical moments of the correction, 
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Consistency however, requires at least as many moments of the sampled parameters to 
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covariance of the parameters to the correction, the mean and the covariance of the sampled 
parameters were correctly described. Thus, to propagate higher order moments the 
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is not applicable within the current second moment approximation of sampling and can be 
ignored. The rapid increase in the number of lambda-points for large n  is indeed a high 
price to pay. For dynamic measurements this is worth paying for as prohibited lambda-
points may even result in unstable and/or un-physical simulations! In practice, the number 
of parameters is usually rather low. It may also be possible to remove a significant number 
of samples. The only requirements are that the rank of V  is sufficient  nm 2 , and that the 
half-unitary condition  1TVV  can be met. 
For the mechanical transducer, there are three uncertain parameters, the amplification and 
the real and imaginary parts of the pole pair (    ppK Im,Re, ). The full binary excitation 
matrix is for three parameters given by, 
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Unscented binary sampling thus resulted in 823 m  ‘binary’ lambda-points, or digital 
correction filters illustrated in Fig. 7 (top left). Applying these filters to the measured signal 
yielded eight corrected signals, see Fig. 7 (top right). The statistical evaluation at every 
instant of time (Eq. 21) resulted in the confidence interval of the correction displayed in 
Fig. 7 (bottom). The coverage factors were assumed to be equal and represent normal 
distributed parameters  2Pk . 
The simplicity of unscented propagation is striking. The uncertainty of correction is found 
by filtering measured signals with a ‘typical’ set of correction filter(-s). An already 
implemented dynamic correction (Bruel&Kjaer, 2006) can thus easily be parallelized to also 
find its time-dependent uncertainty, which is unique for every measured signal. 
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Fig. 7. Top left: Poles and zeros of the eight sampled digital correction filters, excluding the 
fixed noise filter. The static gains    are displayed on the real z-axis (close to 1z ). 
Top right: The variation of all corrections from their mean. Bottom: Center Cx  (left) and 
half-width Px  (right) of the confidence interval for the correction. The (rescaled/displaced) 
input signal of the measurement system is shown (dotted) for comparison. 
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The two proposed methods in sections 3.3.1 and 3.3.2 for estimating the model uncertainty 
are equivalent and may be compared. The correct confidence interval is not known but can 
be estimated by means of computationally expensive random sampling or Monte Carlo 
simulations (Rubenstein, 2007). The lambda-points are then substituted with a much larger 
ensemble generated by random sampling. The errors of the estimated confidence interval of 
the correction were found to be different for the two methods, see Fig. 8. 
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Fig. 8. The errors of the center Cx  (left) and the half-width Px  (right) of the confidence 
interval of the correction, for the sensitivity analysis (section 3.3.1) and the method of 
unscented binary sampling (section 3.3.2). The errors are estimated with random sampling 
of 610  correction filters. For comparison, the rescaled input signal is shown (dotted). 
 
The center (Fig. 8, left) as well as the width (Fig. 8, right) is best determined with the 
unscented binary method, in agreement with the performance of extended (based on 
sensitivity) and unscented Kalman filters (Julier, 2004). The errors of the sensitivity 
analysis are small which indicate minor non-linear effects. The half-width of the 
confidence interval, or measurement uncertainty changes much less  43  e  due to non-
linear effects, than the center  48  e  of the interval. That is typical for non-linear 
propagation of uncertainty. Hence it is inconsistent to include non-linear contributions in 
the estimate of the measurement uncertainty but not in the estimate of the mean correction 
(Hessling, 2010b). The unscented method might be superior in performance but its 
simplicity is perhaps a greater advantage. The calculation of time-dependent sensitivities 
is also a source for making mistakes.  
The unitary transformation U  was here chosen (Eq. 17) to easily find time-invariant lambda-
points, rather than to be optimal. An optimized choice is made in the unscented non-
degenerate method (Hessling, 2010b). The time-varying lambda-points are then sampled in 
the direction of the time-dependent gradient (in the parameter space). 
The estimation of mean correction and estimation of uncertainty with sensitivities were 
made with different methods. With unscented sampling these operations are synthesized 
jointly as different statistical moments. The symmetry implies that the analysis can be 
extended to higher moments to more accurately include parametric dependencies. 
However, that would require a sampling method which takes more moments into account 
(Eq. 16), as well as much more information of the stochastic dynamic model than is 
usually available. 
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4. Feature extraction 

There are many examples of extracting dynamic information from measurements which 
qualify as ‘feature extraction’ and can be partly or completely realized with digital filters. A 
crucial aspect is to have a complete and robust specification of the feature to be extracted. 
The two selected examples here are related to the safety of traffic, road hump analysis and 
determination of road texture.  

 
4.1 Road humps  
Maintaining speed limits in the traffic is a global problem. Radar measurements of the speed 
and supervision by policemen are commonly used to enforce speed limits. A popular 
passive control measure is the ‘sleeping policeman’ or road hump (Engwall, 1979). Vehicles 
are intentionally excited in excess when passing the hump which is a modified usually 
elevated short (~3-20m) section of the road. Below the speed limit, road humps should 
provide a safe and comfortable passage, but also be gentle to the vehicle. Above the speed 
limit, the discomfort should increase rapidly to enforce a distinct speed reduction. With 
respect to the human reaction, there are two important features of all road humps, one 
positive and one negative: their efficiency and the risk of injury. The efficiency is central for 
any particular hump design (Hessling & Zhu, 2008c). The risk of injury is normally low for 
single passages, but for multiple daily passages it may be substantial. Especially for 
professional drivers of taxis and buses in towns with many road humps this may be a 
problem. What has been in focus and will be addressed here is the potential damage of the 
human lumbar spine. 
The vibration pulses generated by vehicles travelling over rough surfaces such as road 
humps are believed to cause fatigue stresses in the lumbar spine. Modeling of the load on 
the human body is rather complex and is described in a recent international standard for 
evaluating the human exposure to whole-body vibrations (ISO 2631-5, 2004). It is based on 
non-linear digital filtering followed by statistical evaluation. The adverse health effects of 
prolonged exposure are condensed into an ‘R’-dose. This dose is the feature to extract from 
every complex set of road hump passages. A typical driver uses different vehicles, follows 
different time tables and drive on different roads, from the first to the last working day. The 
dose is normalized to unity which is the threshold for a ‘significant’ risk of injury. The 
calculation of the dose consists of counting peak amplitudes and weighing with exponent 
six. This weighing models the accumulated fatigue stress of the lumbar spine. 
The standard for whole body vibration (ISO 2631-5, 2004) addresses the propagation of 
vibrations from the seat pad of the driver seat to the spinal cord. The road hump problem is 
more complex. Geometric road hump profiles are translated into an excitation signal in time 
via the variable speed of the vehicles. For a fixed hump, the bandwidth of the road height 
signal increases with the speed – that is the fundamental principle of road humps. The 
vehicles may also be drastically different with respect to size as well as construction. For 
instance, the center-of-gravity is far away from the driver in buses but not in cars. This 
affects the response substantially (Hessling & Zhu, 2008c). The seats may also be different. 
Preferably, the vehicle as well as the seat response may be simulated with digital filters, just 
like the human response. The analysis of a particular road hump passage is then made with 
several digital filters, as shown in Fig. 9 below. The human lumbar spine filter and the 
vehicle filters are non-trivial and will be discussed below. 
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Fig. 8. The errors of the center Cx  (left) and the half-width Px  (right) of the confidence 
interval of the correction, for the sensitivity analysis (section 3.3.1) and the method of 
unscented binary sampling (section 3.3.2). The errors are estimated with random sampling 
of 610  correction filters. For comparison, the rescaled input signal is shown (dotted). 
 
The center (Fig. 8, left) as well as the width (Fig. 8, right) is best determined with the 
unscented binary method, in agreement with the performance of extended (based on 
sensitivity) and unscented Kalman filters (Julier, 2004). The errors of the sensitivity 
analysis are small which indicate minor non-linear effects. The half-width of the 
confidence interval, or measurement uncertainty changes much less  43  e  due to non-
linear effects, than the center  48  e  of the interval. That is typical for non-linear 
propagation of uncertainty. Hence it is inconsistent to include non-linear contributions in 
the estimate of the measurement uncertainty but not in the estimate of the mean correction 
(Hessling, 2010b). The unscented method might be superior in performance but its 
simplicity is perhaps a greater advantage. The calculation of time-dependent sensitivities 
is also a source for making mistakes.  
The unitary transformation U  was here chosen (Eq. 17) to easily find time-invariant lambda-
points, rather than to be optimal. An optimized choice is made in the unscented non-
degenerate method (Hessling, 2010b). The time-varying lambda-points are then sampled in 
the direction of the time-dependent gradient (in the parameter space). 
The estimation of mean correction and estimation of uncertainty with sensitivities were 
made with different methods. With unscented sampling these operations are synthesized 
jointly as different statistical moments. The symmetry implies that the analysis can be 
extended to higher moments to more accurately include parametric dependencies. 
However, that would require a sampling method which takes more moments into account 
(Eq. 16), as well as much more information of the stochastic dynamic model than is 
usually available. 
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4. Feature extraction 

There are many examples of extracting dynamic information from measurements which 
qualify as ‘feature extraction’ and can be partly or completely realized with digital filters. A 
crucial aspect is to have a complete and robust specification of the feature to be extracted. 
The two selected examples here are related to the safety of traffic, road hump analysis and 
determination of road texture.  

 
4.1 Road humps  
Maintaining speed limits in the traffic is a global problem. Radar measurements of the speed 
and supervision by policemen are commonly used to enforce speed limits. A popular 
passive control measure is the ‘sleeping policeman’ or road hump (Engwall, 1979). Vehicles 
are intentionally excited in excess when passing the hump which is a modified usually 
elevated short (~3-20m) section of the road. Below the speed limit, road humps should 
provide a safe and comfortable passage, but also be gentle to the vehicle. Above the speed 
limit, the discomfort should increase rapidly to enforce a distinct speed reduction. With 
respect to the human reaction, there are two important features of all road humps, one 
positive and one negative: their efficiency and the risk of injury. The efficiency is central for 
any particular hump design (Hessling & Zhu, 2008c). The risk of injury is normally low for 
single passages, but for multiple daily passages it may be substantial. Especially for 
professional drivers of taxis and buses in towns with many road humps this may be a 
problem. What has been in focus and will be addressed here is the potential damage of the 
human lumbar spine. 
The vibration pulses generated by vehicles travelling over rough surfaces such as road 
humps are believed to cause fatigue stresses in the lumbar spine. Modeling of the load on 
the human body is rather complex and is described in a recent international standard for 
evaluating the human exposure to whole-body vibrations (ISO 2631-5, 2004). It is based on 
non-linear digital filtering followed by statistical evaluation. The adverse health effects of 
prolonged exposure are condensed into an ‘R’-dose. This dose is the feature to extract from 
every complex set of road hump passages. A typical driver uses different vehicles, follows 
different time tables and drive on different roads, from the first to the last working day. The 
dose is normalized to unity which is the threshold for a ‘significant’ risk of injury. The 
calculation of the dose consists of counting peak amplitudes and weighing with exponent 
six. This weighing models the accumulated fatigue stress of the lumbar spine. 
The standard for whole body vibration (ISO 2631-5, 2004) addresses the propagation of 
vibrations from the seat pad of the driver seat to the spinal cord. The road hump problem is 
more complex. Geometric road hump profiles are translated into an excitation signal in time 
via the variable speed of the vehicles. For a fixed hump, the bandwidth of the road height 
signal increases with the speed – that is the fundamental principle of road humps. The 
vehicles may also be drastically different with respect to size as well as construction. For 
instance, the center-of-gravity is far away from the driver in buses but not in cars. This 
affects the response substantially (Hessling & Zhu, 2008c). The seats may also be different. 
Preferably, the vehicle as well as the seat response may be simulated with digital filters, just 
like the human response. The analysis of a particular road hump passage is then made with 
several digital filters, as shown in Fig. 9 below. The human lumbar spine filter and the 
vehicle filters are non-trivial and will be discussed below. 
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Fig. 9. The road hump response from the road, via the vehicle (moves to the left), to the 
human lumbar spine (left), is simulated with multiple digital filtering (DF) (right). 

 
4.1.1 Human lumbar spine filter 
In the horizontal directions, the response of the lumbar spine is modeled with a linear 
second order resonant system with one degree of freedom, similar to the transducer in 
section 3.1.1. In the vertical direction, advanced non-linear filtering is applied. The 
predominant vertical motion will be discussed here. All details of the evaluation of the 
lumbar spine response are included in the standard (ISO 2631-5, 2004). Aspects of particular 
interest in the context of digital filtering will be highlighted here. The (output) vertical 
lumbar spine acceleration  ky  at time sample Sk kTt   is calculated with a recurrent neural 
network (RNN) model from the (input) seat acceleration  kx  as, 
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The constants jji Ww ,  are given in the standard, where also the derivation of this RNN is 
discussed (annex C). The RNN is a non-linear IIR filter. The output is a linear combination 
of neurons  ku j  (Eq. 25b). If the neurons are viewed as input signals, the model is static 
and linear as only neurons at the same time instant  k  as the output are weighted (Eq. 25a). 
Disregarding this weighing of neurons and considering  kx  as input and  ky  as output, 
the second sum in Eq. 25b corresponds to a FIR-filter while the first sum describes the 
recursion or feed-back of an IIR-filter. The tanh  function provides the non-linearity which is 
individually tuned for each neuron by adjusting the constants  03.1,96.013 jw .  
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The small amplitude dynamic response of the lumbar spine can be understood by a linear 
approximation of the filter. If each neuron ju  is linearized around 13jw , 
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The poles, zeros and the magnitude of the frequency response of this filter are shown in 
Fig. 10. The amplitude response is almost flat  Hz 02Hz 10,octavedB .51  f  above the 
peak at Hz .74  generated by nearly cancelation of a pole and a zero pair. 
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Fig. 10. All poles and zeros (left), the almost cancelling pole and zero pairs (middle) and the 
frequency response (right) of the linearized human lumbar spine filter. 
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A significant non-linearity  %20  is expected for 2

0 sm10a . Indeed, that is confirmed by 
the simulations in Fig. 11. The response of the lumbar spine filter is linear for accelerations 

2sm 1a  and static for pulse widths sfC 2.01  . 
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Fig. 9. The road hump response from the road, via the vehicle (moves to the left), to the 
human lumbar spine (left), is simulated with multiple digital filtering (DF) (right). 
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The constants jji Ww ,  are given in the standard, where also the derivation of this RNN is 
discussed (annex C). The RNN is a non-linear IIR filter. The output is a linear combination 
of neurons  ku j  (Eq. 25b). If the neurons are viewed as input signals, the model is static 
and linear as only neurons at the same time instant  k  as the output are weighted (Eq. 25a). 
Disregarding this weighing of neurons and considering  kx  as input and  ky  as output, 
the second sum in Eq. 25b corresponds to a FIR-filter while the first sum describes the 
recursion or feed-back of an IIR-filter. The tanh  function provides the non-linearity which is 
individually tuned for each neuron by adjusting the constants  03.1,96.013 jw .  
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The small amplitude dynamic response of the lumbar spine can be understood by a linear 
approximation of the filter. If each neuron ju  is linearized around 13jw , 
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Fig. 10. All poles and zeros (left), the almost cancelling pole and zero pairs (middle) and the 
frequency response (right) of the linearized human lumbar spine filter. 
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Fig. 11. Lumbar spine response and its difference to linearized response NL , for various 

pulse acceleration amplitudes A  and widths T : 2sm 10A  (top), 2sm 1A  (bottom), 

s 1T  (left), and s 2.0T  (right). The units are 2sm  (vertical) and s  (horizontal). 

 
4.1.2 Vehicle filters 
A vehicle is a dynamic system which responds to the road hump signal, similarly to how a 
measurement system responds to its input signal. A vehicle is a composed mechanical 
system. It may be approximated with a lumped linear system with solid masses  m  and 
spring  kl   and damping elements  cl   (Hessling et. al., 2008c), similarly to a recent 
model of material testing machines (Hessling, 2008b). A two axes vehicle is modeled in 
Fig. 9 (left). The front  Fx2  and rear  Rx2  coordinates are the two related input signals 
describing height,    vtxtx FR  22 , where   is the distance between the axes and v  is 
the speed. The translation w  and scaled rotation   of the vehicle are the two outputs. The 
transfer function is thus a 22  matrix. The topology of the model can be expressed by a 
symmetric matrix, 
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When used for the spring (damping) constants  nnnn clkl  , the matrix will be denoted 
 CK . The dynamic equations are given by Newton’s force and torque laws, 
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where t is the time-derivative while knf  and n  represent the th-n  force and torque, 
respectively, and   is the radius of gyration. For a contraction x , the spring force is 

xkf   and the damping force xcf t . The topology matrix in Eq. 28 results from 

Eq. 29 with a specific choice of state-space variables  Tuuuu 821  , 
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The state-space equation will be given in the topology matrix CKL , , 
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The measurement equation relates the seat coordinate (Fig. 9) to the state-space variables, 
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The transfer function from the road hump signal, or front wheel coordinate  tx F2  is found 
by applying the La-place transform to the state-space equation (Eq. 31) as in section 2.3, 
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The vehicle system  sH  can be sampled as described in section 2.2 to find a digital vehicle 
filter. Alternatively, this filter can be found by calibrating the vehicle and analyzing its 
response (Zhu et. al., 2009). A bank of such digital vehicle filters can be used to represent the 
relevant traffic. The road height signals are determined by the road height profile and the 
speed of the vehicle. These signals are then filtered with vehicle filters to find the response 
of various vehicles, and with the lumbar spine filter in section 4.1.1 to find the human 
response. In this way, the health risk of road humps can be evaluated with digital filtering.  
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Fig. 11. Lumbar spine response and its difference to linearized response NL , for various 

pulse acceleration amplitudes A  and widths T : 2sm 10A  (top), 2sm 1A  (bottom), 

s 1T  (left), and s 2.0T  (right). The units are 2sm  (vertical) and s  (horizontal). 
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When used for the spring (damping) constants  nnnn clkl  , the matrix will be denoted 
 CK . The dynamic equations are given by Newton’s force and torque laws, 
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where t is the time-derivative while knf  and n  represent the th-n  force and torque, 
respectively, and   is the radius of gyration. For a contraction x , the spring force is 
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The state-space equation will be given in the topology matrix CKL , , 
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The measurement equation relates the seat coordinate (Fig. 9) to the state-space variables, 
 

    uPuaby  001  . (32) 
 

The transfer function from the road hump signal, or front wheel coordinate  tx F2  is found 
by applying the La-place transform to the state-space equation (Eq. 31) as in section 2.3, 
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The vehicle system  sH  can be sampled as described in section 2.2 to find a digital vehicle 
filter. Alternatively, this filter can be found by calibrating the vehicle and analyzing its 
response (Zhu et. al., 2009). A bank of such digital vehicle filters can be used to represent the 
relevant traffic. The road height signals are determined by the road height profile and the 
speed of the vehicle. These signals are then filtered with vehicle filters to find the response 
of various vehicles, and with the lumbar spine filter in section 4.1.1 to find the human 
response. In this way, the health risk of road humps can be evaluated with digital filtering.  
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4.2 Road surface texture 
The texture of roads is a critical feature. It affects the friction between the road surface and 
the tire. Slippery roads in rain are often a consequence of lack of texture of the road and/or 
the tire. If a road has been found to have insufficient texture, it must be modified to avoid 
accidents. Since it is very costly to rebuild roads, the pass and fail criteria are crucial. The 
surface texture is determined in two steps. The road surface is first measured and densely 
sampled, often with a profilograph. It is a vehicle equipped with a height measuring system. 
The vehicle motion is determined with inertial navigation and the distance between its 
height and the road is measured with a laser. The difference signal describes the road 
surface. The surface height map is then condensed into a feature called mean profile depth 
(MPD), according to an international standard (ISO 13473-1, 1997). Unfortunately, the 
evaluation lacks robustness. Independent evaluations may result in different values of the 
MPD. Hence, the method needs to be improved. The current evaluation is first described 
and commented in section 4.2.1. An improved method based on digital filtering will then be 
proposed in section 4.2.2. Digitals filters are robust as they specify the calculation 
completely. Fixing the sampling rate, the proposed filter coefficients can be directly stated in 
a revised standard, similarly to the specification of the lumbar spine filter (ISO 2631-5, 2004). 

 
4.2.1 Mean profile depth (MPD) 
The standard for characterization of road/pavement texture (ISO 13473-1, 1997) follows the 
steps in Fig. 12 to evaluate road height variations with wavelengths in the range of 

mm 505 , corresponding to a frequency band -1m 20020 . Inverse distance is a frequency 
equivalent to inverse time. 
 

 
Fig. 12. The mean profile depth (MPD) (left) is according to the standard (ISO 13473-1, 1997) 
determined in four steps (right), using a measured map of heights h  (Step 0). 
 
The road height profile (step 0) must be sampled with a horizontal resolution of at least 

mm 1 . That is plausible considering the shortest wavelength of interest  mm 5 . The 
bandpass-filtering (step 1) is not further specified than the dB 3  cross-over frequencies 
  -1m 400 0,1  and minimal slopes   octavedB 12 ,6 . The upper cross-over frequency is on the 
borderline of being consistent with the sampling rate – the utilization is as high as 

%80500/400  . The specification of minimal slope may be understood from the widespread 
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concept of ideal ‘square’ filter response in the frequency domain. It cannot be understood 
from considerations in the space domain: A too abrupt cut-off in the frequency domain must 
result in oscillations in the space domain. Further, in the space domain the phase distortion 
is important. No requirement on the phase response of the band-pass filter is however 
made. Baseline limiting (step 2) consists of dividing the measured surface profile into 
consecutive baseline intervals of mm 10100  length. The peaks in the two adjacent 
segments of equal length  mm 50  are then detected (step 3).  The MPD is finally determined 
as the average of these peaks, measured relative to the mean height (step 4).  
Dividing the profile into baselines and detecting isolated peaks in this way may be common 
but is definitely not robust. The result is sensitive to translations of the dividing points of 
adjacent baselines, as well as changes in the position of the peaks. Any peak occurring only 
once in each segment will be counted in full but together with a larger peak, it will be 
completely neglected. These deficiencies will result in noisy MPD-signals. 

 
4.2.2 Modified MPD (MMPD) 
Many aspects of the current standard can be improved without major deviations from the 
intentions of the standard. The degree of agreement between the modified mpd (MMPD) to 
be proposed and the current MPD will not be a measure of quality. Rather, the quality is to 
be found in fulfillment of the intentions of the current standard (ISO 13473-1, 1997) and 
desired properties such as low sensitivity to irrelevant disturbances, repeatability in 
independent evaluations and simplicity of implementation. 
The band-pass filtering in step 1 (Fig. 12) describes the selection of relevant information. The 
filter needs to be specified in more detail to improve the repeatability as well as reducing the 
distortion. A simple method to eliminate phase distortion is to use symmetric forward and 
reversed digital filtering (section 2.1). The fall-off rate can be chosen as low as possible by 
using a first-order filter. The suggestion is to use a standard digital Butterworth filter of first 
order with cross-over frequencies   -1m 434 .5,6 , and apply it in both directions of space. A 
sampling rate -1m 0001Sf  complies with the required resolution and gives a numerically 
acceptable utilization. That will result in a fall-off rate of   octavedB 12,12  and zero phase 
response. This filter fulfills all requirements of the current standard. 
The MPD calculation requires major adjustments to become robust. The division into 
disjoint baselines (step 2, Fig. 12) is preferably substituted with overlapping baselines. 
Calculating the average height h  will then directly correspond to digital filtering of the 
road profile with an averaging FIR-filter with equal coefficients 100,2,1,1001  kbk . 
Averaging filters belong to the class of smoothing filters and are well-known to be anything 
but perfect (Hamming, 1998). They have an oscillating frequency response, an undesirable 
finite amplification at the Nyquist frequency Nf , as well as an unwanted finite slope at zero 
frequency. Applying an averaging filter is equivalent of piecewise linear regression with a 
constant. A better alternative is to use a polynomial. Such polynomial smoothing FIR-filters 
(includes the averaging filter) have linear phase (symmetric coefficients). Polynomial filters 
have the same deficiency of finite amplification at Nf . This undesired response may be 
removed by adjusting the identical first and last coefficients. Treating them as a free 
parameter they may be adjusted for zero gain of the filter at Nf . That will improve the high 
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4.2 Road surface texture 
The texture of roads is a critical feature. It affects the friction between the road surface and 
the tire. Slippery roads in rain are often a consequence of lack of texture of the road and/or 
the tire. If a road has been found to have insufficient texture, it must be modified to avoid 
accidents. Since it is very costly to rebuild roads, the pass and fail criteria are crucial. The 
surface texture is determined in two steps. The road surface is first measured and densely 
sampled, often with a profilograph. It is a vehicle equipped with a height measuring system. 
The vehicle motion is determined with inertial navigation and the distance between its 
height and the road is measured with a laser. The difference signal describes the road 
surface. The surface height map is then condensed into a feature called mean profile depth 
(MPD), according to an international standard (ISO 13473-1, 1997). Unfortunately, the 
evaluation lacks robustness. Independent evaluations may result in different values of the 
MPD. Hence, the method needs to be improved. The current evaluation is first described 
and commented in section 4.2.1. An improved method based on digital filtering will then be 
proposed in section 4.2.2. Digitals filters are robust as they specify the calculation 
completely. Fixing the sampling rate, the proposed filter coefficients can be directly stated in 
a revised standard, similarly to the specification of the lumbar spine filter (ISO 2631-5, 2004). 

 
4.2.1 Mean profile depth (MPD) 
The standard for characterization of road/pavement texture (ISO 13473-1, 1997) follows the 
steps in Fig. 12 to evaluate road height variations with wavelengths in the range of 

mm 505 , corresponding to a frequency band -1m 20020 . Inverse distance is a frequency 
equivalent to inverse time. 
 

 
Fig. 12. The mean profile depth (MPD) (left) is according to the standard (ISO 13473-1, 1997) 
determined in four steps (right), using a measured map of heights h  (Step 0). 
 
The road height profile (step 0) must be sampled with a horizontal resolution of at least 

mm 1 . That is plausible considering the shortest wavelength of interest  mm 5 . The 
bandpass-filtering (step 1) is not further specified than the dB 3  cross-over frequencies 
  -1m 400 0,1  and minimal slopes   octavedB 12 ,6 . The upper cross-over frequency is on the 
borderline of being consistent with the sampling rate – the utilization is as high as 
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concept of ideal ‘square’ filter response in the frequency domain. It cannot be understood 
from considerations in the space domain: A too abrupt cut-off in the frequency domain must 
result in oscillations in the space domain. Further, in the space domain the phase distortion 
is important. No requirement on the phase response of the band-pass filter is however 
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4.2.2 Modified MPD (MMPD) 
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Calculating the average height h  will then directly correspond to digital filtering of the 
road profile with an averaging FIR-filter with equal coefficients 100,2,1,1001  kbk . 
Averaging filters belong to the class of smoothing filters and are well-known to be anything 
but perfect (Hamming, 1998). They have an oscillating frequency response, an undesirable 
finite amplification at the Nyquist frequency Nf , as well as an unwanted finite slope at zero 
frequency. Applying an averaging filter is equivalent of piecewise linear regression with a 
constant. A better alternative is to use a polynomial. Such polynomial smoothing FIR-filters 
(includes the averaging filter) have linear phase (symmetric coefficients). Polynomial filters 
have the same deficiency of finite amplification at Nf . This undesired response may be 
removed by adjusting the identical first and last coefficients. Treating them as a free 
parameter they may be adjusted for zero gain of the filter at Nf . That will improve the high 
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frequency attenuation considerably, see Fig. 13 (right). The unavoidable change in 
bandwidth may be compensated by adjusting the length of the filter. These filters will be 
called modified polynomial filters. The regularity or differentiability at zero frequency 
increases with the order of the polynomial: An thn  order polynomial filter has 1n  
vanishing derivatives at zero frequency. Thus, they resemble the Butterworth ‘max-flat’ 
design (Hamming, 1998). The modified polynomial FIR filter is thus comparable to the IIR 
Butterworth filter, see Fig. 13 (left). Avoiding recursion requires many more coefficients – 
filters like the polynomial filters could be obtained by truncated sampling of the infinite 
impulse response of Butterworth filters. This truncation introduces oscillations as shown in 
Fig. 13 (right). 
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Fig. 13. Magnitude of frequency response of smoothing filters,  in the low (left) and high 
(right) frequency range: the averaging filter(right: 1.0 ) , the modified square polynomial 
117-tap FIR filter, and the proposed second order Butterworth filter (BW) with cross-over 
frequency -1m 5.5 . 
 
The smoother roll-off of the recursive Butterworth filter results in a more robust analysis of 
noisy measurements. Its low number of filter coefficients is also preferable in a standard 
document. The complexity of implementation is low as well as the risk of making errors. 
The order of filtering is not critical for the remaining steps of the analysis and can be 
increased. The phase distortion may once again be eliminated with symmetric forward and 
reverse filtering (section 2.1). The effective order will then double to four.  
The peaks detected in step 3 (Fig. 12) are closely related to percentiles determined from 
cumulative probability distributions. Percentiles are for instance used in calibrations 
(ISO GUM, 1993). The thn  percentile   xPn  is the value exceeding precisely n  per cent 
of all samples  x . Statistical moments (section 3.3.2) are superior to high percentiles in 
robustness as they utilize weighing over all samples. The ratios of percentiles and the 
standard deviation are called coverage factors (section 3.3). A robust measure of peaks is 
found by combining a short-range standard deviation and a long-range percentile. The 
number of samples in every baseline is far too low for evaluation of percentiles. Each set of 
100 consecutive recordings of the road depth in each baseline may be considered as samples 
drawn from a unique pdf. The widths of different pdfs belonging to different baselines are 
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likely different. The coverage factors or the types of these pdfs are likely much less different. 
A plausible assumption is that the coverage factors for different baselines are nearly equal 
and can be estimated using all samples. This global coverage factor is as robust as possible. 
The mean of the two peaks in Fig. 12 are rather well described by the th99  percentile. The 
calculation of the standard deviation is robust enough to be calculated for each baseline. The 
smoothing filter used to calculate the mean baseline depth h  can also be used to evaluate 
the mean baseline square deviation   222 hhhh  , or squared standard deviation. 
The smoothing filter is effectively a rather sharp anti-alias filter. The MPD signal may 
therefore be directly down-sampled to be consistent with the baseline resolution. This 
concludes the derivation of the method for determining the modified MPD (MMPD): 

1. The measured road profile is sampled with -1m 1000Sf . Otherwise, linear down-
sampling is applied. 

2. The road profile is filtered in both directions of time with a digital band-pass 
Butterworth filter of order one with cross-over frequencies   -1m 434,5.6Cf . Filter 
coefficients2: ]8119.008119.0[ b , ]6237.03099.0000.1[ a .  

3. The running mean and variance of the depth are evaluated with the same smoothing 
filter. The digital Butterworth filter is of order two, has a cross-over frequency 

-1m 5.5Cf , and is applied in both directions of time. The band-pass filtered road 

profile h  and its square 2h  are filtered to give 
S

h  and 
S

h2 , respectively. Filter 

coefficients: ]2921.05842.02921.0[10 3  b , ]9522.09511.1000.1[ a .  
4. The th99   percentile of the road depth,  

A
hhP 99 , where 

A
  denotes average 

over all samples, will be called GPD – Global Profile Depth. It is a measure of the 

mean MMPD. The global coverage factor is given by, 22GPD
AAP hhk  . 

5. The mean profile depth is given by, 2222GPDMMPD
AASS

hhhh  . 

6. Finally, the MMPD is down-sampled to -1m 20Sf . 
  
An example of calculated MMPD is shown in Fig. 14. The generated road profile was an 
uncorrelated normally distributed variation of depth with standard deviation equal to one. 
The smoothing filter of the MMPD is compared to the average filter suggested by the 
current standard. Clearly, the robustness improved considerably – the noise of the 
calculated mean profile depth disappeared. 

                                                                 
2 Defined according to a common convention (Matlab): Numerator ][ 10 bbb   and 
denominator ][ 10 aaa  , where the indices denote the lag in samples. 
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frequency attenuation considerably, see Fig. 13 (right). The unavoidable change in 
bandwidth may be compensated by adjusting the length of the filter. These filters will be 
called modified polynomial filters. The regularity or differentiability at zero frequency 
increases with the order of the polynomial: An thn  order polynomial filter has 1n  
vanishing derivatives at zero frequency. Thus, they resemble the Butterworth ‘max-flat’ 
design (Hamming, 1998). The modified polynomial FIR filter is thus comparable to the IIR 
Butterworth filter, see Fig. 13 (left). Avoiding recursion requires many more coefficients – 
filters like the polynomial filters could be obtained by truncated sampling of the infinite 
impulse response of Butterworth filters. This truncation introduces oscillations as shown in 
Fig. 13 (right). 
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Fig. 13. Magnitude of frequency response of smoothing filters,  in the low (left) and high 
(right) frequency range: the averaging filter(right: 1.0 ) , the modified square polynomial 
117-tap FIR filter, and the proposed second order Butterworth filter (BW) with cross-over 
frequency -1m 5.5 . 
 
The smoother roll-off of the recursive Butterworth filter results in a more robust analysis of 
noisy measurements. Its low number of filter coefficients is also preferable in a standard 
document. The complexity of implementation is low as well as the risk of making errors. 
The order of filtering is not critical for the remaining steps of the analysis and can be 
increased. The phase distortion may once again be eliminated with symmetric forward and 
reverse filtering (section 2.1). The effective order will then double to four.  
The peaks detected in step 3 (Fig. 12) are closely related to percentiles determined from 
cumulative probability distributions. Percentiles are for instance used in calibrations 
(ISO GUM, 1993). The thn  percentile   xPn  is the value exceeding precisely n  per cent 
of all samples  x . Statistical moments (section 3.3.2) are superior to high percentiles in 
robustness as they utilize weighing over all samples. The ratios of percentiles and the 
standard deviation are called coverage factors (section 3.3). A robust measure of peaks is 
found by combining a short-range standard deviation and a long-range percentile. The 
number of samples in every baseline is far too low for evaluation of percentiles. Each set of 
100 consecutive recordings of the road depth in each baseline may be considered as samples 
drawn from a unique pdf. The widths of different pdfs belonging to different baselines are 
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likely different. The coverage factors or the types of these pdfs are likely much less different. 
A plausible assumption is that the coverage factors for different baselines are nearly equal 
and can be estimated using all samples. This global coverage factor is as robust as possible. 
The mean of the two peaks in Fig. 12 are rather well described by the th99  percentile. The 
calculation of the standard deviation is robust enough to be calculated for each baseline. The 
smoothing filter used to calculate the mean baseline depth h  can also be used to evaluate 
the mean baseline square deviation   222 hhhh  , or squared standard deviation. 
The smoothing filter is effectively a rather sharp anti-alias filter. The MPD signal may 
therefore be directly down-sampled to be consistent with the baseline resolution. This 
concludes the derivation of the method for determining the modified MPD (MMPD): 

1. The measured road profile is sampled with -1m 1000Sf . Otherwise, linear down-
sampling is applied. 

2. The road profile is filtered in both directions of time with a digital band-pass 
Butterworth filter of order one with cross-over frequencies   -1m 434,5.6Cf . Filter 
coefficients2: ]8119.008119.0[ b , ]6237.03099.0000.1[ a .  

3. The running mean and variance of the depth are evaluated with the same smoothing 
filter. The digital Butterworth filter is of order two, has a cross-over frequency 

-1m 5.5Cf , and is applied in both directions of time. The band-pass filtered road 

profile h  and its square 2h  are filtered to give 
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h  and 
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h2 , respectively. Filter 

coefficients: ]2921.05842.02921.0[10 3  b , ]9522.09511.1000.1[ a .  
4. The th99   percentile of the road depth,  

A
hhP 99 , where 

A
  denotes average 

over all samples, will be called GPD – Global Profile Depth. It is a measure of the 

mean MMPD. The global coverage factor is given by, 22GPD
AAP hhk  . 

5. The mean profile depth is given by, 2222GPDMMPD
AASS

hhhh  . 

6. Finally, the MMPD is down-sampled to -1m 20Sf . 
  
An example of calculated MMPD is shown in Fig. 14. The generated road profile was an 
uncorrelated normally distributed variation of depth with standard deviation equal to one. 
The smoothing filter of the MMPD is compared to the average filter suggested by the 
current standard. Clearly, the robustness improved considerably – the noise of the 
calculated mean profile depth disappeared. 

                                                                 
2 Defined according to a common convention (Matlab): Numerator ][ 10 bbb   and 
denominator ][ 10 aaa  , where the indices denote the lag in samples. 
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Fig. 14. The proposed smoothing of the MMPD compared to the average smoothing of the 
present MPD, for an uncorrelated normally distributed road profile. 

 
5. Conclusions  

A multitude of different digital filters for exploring and refining measurements have been 
discussed: single correction filters or ensembles of correction filters, sensitivity filters, 
lumbar spine filter, banks of vehicle filters, and road texture filters. The analyses they realize 
differ substantially. All digital filters were designed or synthesized in three steps: dynamic 
model – prototype – digital filter. The identification of models was not considered as a part 
of the synthesis of digital filters and was omitted. The model describes the physical system 
and the prototype what we are interested in. The major part of the chapter focused on the 
construction of prototypes from models. The prototypes were sampled into digital filters. A 
brief survey of some well established sampling techniques was given. In the examples, 
prototypes were sampled with the exponential pole-zero mapping.  
The discussed filters fell into one of two categories: 1. Analysis of measured signals utilizing 
calibration information of the measurement system. 2. Extraction of any feature of interest 
that is related to a measured signal. Digital filters devised to correct and analyze measured 
signals are preferably considered as a part of an improved measurement system. The 
extracted feature could be a constant like an accumulated dose describing the risk of injury, 
or a spatially varying measure of road texture. A feature is justified by its broad acceptance 
and they are therefore often defined in standard documents. A feature which is not robust is 
questionable and may lose its importance. Low robustness originates from the definition of 
the feature and/or its incomplete specification. In this context digital filters are ideal, as they 
completely describe how the extraction is made with a finite set of numerical numbers. 
Many operations are difficult to realize in real time, like zero-phase filtering and 
stabilization. These become trivial with reversed filtering, as was illustrated repeatedly. 
The only example of non-linear digital filtering, the human lumbar spine filter, was 
analyzed but not synthesized. It is strongly desired that measurement systems are as linear-
in-response as possible. Correction of the non-linear response of measurement systems with 

 

non-linear digital filters is virgin territory. It requires non-linear model identification, which 
needs to be further developed to reach the ‘off-the-shelf’ status of linear identification 
methods. The sampling techniques for linear systems can to some extent probably be 
inherited to sampling of non-linear prototypes. 
A challenge for the future is to find novel and unique applications where digital filters really 
make a difference to how measurements are processed into valuable results. Digital filters 
are dynamic time-invariant systems with feedback. That sets their potential but also their 
limitations. Sampling is separate from construction of prototypes. Even though sampling of 
systems always introduces errors, it seldom limits the performance of digital filters. 
Normally, it is the quality of the underlying model that is crucial. A digital filter can never 
perform better than the model from which its prototype is constructed. 
Differential equations in time are ubiquitous and are used in perhaps the majority of all 
physical and technological models, but rarely for calibrating measurement systems. For all 
such models, digital filters are potential candidates for modeling, refining results and 
extracting information. Digital filters supporting measurements and synthesized by a third-
party (neither manufacturers, nor users) are still in their infancy. It is truly amazing how 
useful such digital filters often turn out to be in various applications. 
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Fig. 14. The proposed smoothing of the MMPD compared to the average smoothing of the 
present MPD, for an uncorrelated normally distributed road profile. 

 
5. Conclusions  

A multitude of different digital filters for exploring and refining measurements have been 
discussed: single correction filters or ensembles of correction filters, sensitivity filters, 
lumbar spine filter, banks of vehicle filters, and road texture filters. The analyses they realize 
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model – prototype – digital filter. The identification of models was not considered as a part 
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and the prototype what we are interested in. The major part of the chapter focused on the 
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1. Introduction  

Conventional linear digital circuits are providing usually a delay response that is equal to an 
integer number of sampling intervals (as in linear-phase FIR (finite-impulse-response) 
realizations) or is changing uncontrollably with the frequency (for all IIR (infinite-impulse-
response) digital filters). It appeared, however, that we might often need a circuit with a 
delay response that is a fraction of the sampling interval and is fixed or variable (or only 
adjustable). Design and implementation of such circuits with given and properly controlled 
fractional delay (FD) is the hottest digital filters topic in the last ten years. These circuits are 
invaluable in many telecommunications applications, like time adjustment and precise jitter 
elimination in digital receivers, echo cancellation, phase-array antenna systems, trans-
multiplexers, sample-rate converter and software radio. They are needed in speech synthesis 
and processing, image interpolation, sigma-delta modulators, time-delay estimation, in 
some biomedical applications and for modeling of musical instruments. Most of these 
applications are overviewed in (Laakso et al., 1996) and (Valimaki & Laakso, 2001).  

 
1.1 FIR fractional delay filters 
The design of fixed FIR FD filters (FDF) is well developed and quite a mature field, because 
it is relatively easy to formulate the design problem and to obtain an optimal solution. Many 
methods, so far, have been advanced and most of them are well summarized in (Laakso et 
al., 1996) and (Valimaki & Laakso, 2001). They include a least squared (LS) integral error 
design, often combined with properly selected window functions or other methods for 
smoothing the filter transition band; weighted LS (WLS) integral error approximation of the 
frequency response (Laakso et al., 1996); maximally-flat FD design based on Lagrange 
interpolation (very popular and widely used, but with several drawbacks (Deng & 
Nakagawa, 2004); (Deng, 2009a)); minimax design, achieving lower than LS and Lagrange 
filters maximal error (Valimaki & Laakso, 2001); splines-based FDF design (Laakso et al., 
1996). Most of these methods are used to design also variable FD (VFD) FIR filters. There are 
many other VFD FIR filters design methods like a constrained minimax optimization 
method (Vesma & Saramaki, 2000), a singular value decomposition method (Deng & 
Nakagawa, 2004), a Taylor series expansion method (Johanson & Lovenborg, 2003), and the 
WLS design (Tseng, 2004); (Huang et al., 2009). Recently a new method (Tseng & Lee, 2009) 
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and a new criterion (Shyu et al., 2010) for design of such filters have been proposed. Most of 
the VFD FIR filters are using the Farrow structure (Farrow, 1988), its modifications (Yli-
Kaakinen & Saramaki, 2006) or transformations (Deng, 2009a). In (Deng, 2010a) several new 
hybrid structures with reduced complexity have been developed. Common disadvantages 
of all the FIR FDFs are their higher complexity (higher order transfer function (TF) and too 
many multipliers and delays), very high overall delay and not constant for all frequencies 
magnitude response, varying additionally when the delay is tuned. 

 
1.2 General IIR fractional delay filters 
Recently, several methods for design and implementation of general IIR variable FDFs have 
been proposed. The method in (Zhao & Kwan, 2007) is based on a two-steps procedure, 
where in the first step a set of fixed delay general IIR filters are designed by minimizing a 
quadratic objective function defined by integrated error criterion; in the second step the TF 
coefficients of the fixed delay filters are represented as polynomials and are fitted for any 
given FD. The method in  (Tsui et al., 2007) is based on a new model reduction technique 
and is applicable to IIR TFs that are decomposable to sub-filters with a common 
denominator (which will stay fixed when the filter is tuned), realized then as Farrow 
structures. These methods are further generalized and expanded to FIR, allpass, Hilbert 
transformers and other devices in (Kwan & Jiang, 2009); (Pei et al., 2010). Both methods are 
achieving an impressive FD variability, but at a price of too higher TF order (30 or 55 in 
(Zhao & Kwan, 2007)) and calculation of too many multiplier coefficients (for example 426 in 
(Zhao & Kwan, 2007)), to be practical. The interest in general IIR VFD realizations, will 
grow, however, because they may offer a lower overall group delay time compared to the 
allpass realizations (Kwan & Jiang, 2009) and also could be used for a simultaneous 
magnitude and phase approximation. 

 
1.3 Allpass-based fractional delay filters 
There are IIR FDFs (fixed and variable), avoiding all the disadvantages of the FIR and of the 
general IIR FDFs, and they are based on allpass structures. The main advantage of the 
allpass-based FDF is that their magnitude is unity for all frequencies and it remains unity 
when the FD is tuned. The TF order of these filters is low and so are the circuit complexity 
and the total delay time compared to those of the FIR realizations. Many methods for design 
of allpass based FDF have been described in (Laakso et al., 1996) and (Valimaki & Laakso, 
2001) and many more new methods (mainly for variable FDFs) have been proposed after 
that.  
One group in (Laakso et al., 1996) and (Valimaki & Laakso, 2001) consists of several WLS 
methods. Recently (Tseng, 2002) a new iterative WLS method was developed, but it was 
shown (Deng, 2006) that very often it is not converging. A new noniterative approach 
solving the minimization problem by using a matrix equation and thus avoiding the 
convergence problems was advanced in (Deng, 2006). Both methods are rigorously proven 
and are producing very impressive results (very low frequency response error), but as with 
the general IIR methods, the TF order is very high (35 for example), each of the multiplier 
coefficients is represented by polynomial of 5th or 6th order (making thus the total number of 
the coefficients higher than 200). Then 100 sets of coefficients are calculated to cover the 
frequency range from 0 to 0.9π, and another 30 sets are calculated to cover the range of FD 

 

from -0.5 to 0.5. And, if the required FD is not coinciding with some of these 30 sets, new 
coefficients are calculated using a polynomial interpolation. The method in (Deng, 2006) was 
further generalized in (Deng, 2009b) throughout an optimization of the range of the variable 
part of the delay-time, a usage of different order subfilters (canceling thus the application of 
the matrix approach), and a reformulation of the WLS design. As a result, the complexity of 
the final structure was additionally reduced (to only 158 filter coefficients, compared to 210 
and 175 for the example with the three methods), making this the best in the group. The 
structure complexity and the computational load, however, are still very high and we 
consider this approach to realize allpass-based VFDFs quite unpractical and not permitting a 
real time tuning.  
Another group of design methods encompasses all the minimax approaches to allpass FDFs 
design in terms of minimal phase error, phase-delay or group-delay error (Laakso et al., 
1996). An improved optimization method was proposed in (Yli-Kaakinen & Saramaki, 2004) 
to overcome the problems with the convergence when designing VFDFs. It is based on a 
gradual increase of the filter order and optimization in minimax sense to obtain optimal 
values for the adjustable parameters. This method is addressing the famous “gathering 
structure” (Makundi et al., 2001), widely used for realization of allpass-based VFDFs. 
Recently another method, approximately formulating the minimax design as a linear 
programming problem, solved noniteratively or iteratively, was advanced (Deng, 2010b). 
These methods are efficient and the results are impressive, but the design procedures, 
including complicated optimizations, are quite difficult to be applied in an engineering 
design. 
The third and most popular group of methods is the maximally-flat design of allpass FDFs 
based on Thiran approximation (Thiran, 1971), giving a closed-form solution for the TF 
coefficients. The Thiran-based design of VFDF is somehow connected to the gathering struc-
ture, which permits very easy real-time tuning by recalculating and reprogramming a single 
coefficient value. This structure was criticized recently for its long critical path and big 
difference between the coefficient values (requiring longer wordlength) and an improved 
structure was proposed in (Cho et al., 2007). Another way to use Thiran approximation but 
to avoid usage of gathering structure to realize VFDF (and thus to avoid the division 
operation in the recalculation of the coefficients) was proposed in (Hachabiboĝlu et al., 
2007) and it is called “root displacement interpolation (RDI) method” (See Sect. 6.1). The 
resulting structure, however, is quite complicated, the range of tuning is narrow and the 
tuning error is quite high.  
All general IIR and allpass-based VFD filters are having a common drawback, consisting of 
considerable transients appearing every time when the filter is tuned. Suppression of these 
transients is a difficult problem, several methods to solve it are discussed in (Valimaki & 
Laakso, 1998); (Valimaki & Laakso, 2001); (Makundi et al., 2002) and (Hachabiboĝlu et al., 
2007), but publications on this topic are very few and a lot more remains to be done. 
The main aim of the present chapter is to investigate and compare the existing and to deve-
lop new methods of design, realization and tuning of allpass-based FDFs and to increase the 
accuracy throughout minimization of their sensitivities. It will permit more efficient multi-
plierless realizations, shorter wordlength and lower power consumption. The design 
procedures should be straightforward, without iterative and complicated optimization 
steps, in order to be easily used by practicing engineers and the structures have to be with 
the lowest possible TF order and complexity, in order to be easily tuned in real time. 
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and a new criterion (Shyu et al., 2010) for design of such filters have been proposed. Most of 
the VFD FIR filters are using the Farrow structure (Farrow, 1988), its modifications (Yli-
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hybrid structures with reduced complexity have been developed. Common disadvantages 
of all the FIR FDFs are their higher complexity (higher order transfer function (TF) and too 
many multipliers and delays), very high overall delay and not constant for all frequencies 
magnitude response, varying additionally when the delay is tuned. 

 
1.2 General IIR fractional delay filters 
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where in the first step a set of fixed delay general IIR filters are designed by minimizing a 
quadratic objective function defined by integrated error criterion; in the second step the TF 
coefficients of the fixed delay filters are represented as polynomials and are fitted for any 
given FD. The method in  (Tsui et al., 2007) is based on a new model reduction technique 
and is applicable to IIR TFs that are decomposable to sub-filters with a common 
denominator (which will stay fixed when the filter is tuned), realized then as Farrow 
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achieving an impressive FD variability, but at a price of too higher TF order (30 or 55 in 
(Zhao & Kwan, 2007)) and calculation of too many multiplier coefficients (for example 426 in 
(Zhao & Kwan, 2007)), to be practical. The interest in general IIR VFD realizations, will 
grow, however, because they may offer a lower overall group delay time compared to the 
allpass realizations (Kwan & Jiang, 2009) and also could be used for a simultaneous 
magnitude and phase approximation. 

 
1.3 Allpass-based fractional delay filters 
There are IIR FDFs (fixed and variable), avoiding all the disadvantages of the FIR and of the 
general IIR FDFs, and they are based on allpass structures. The main advantage of the 
allpass-based FDF is that their magnitude is unity for all frequencies and it remains unity 
when the FD is tuned. The TF order of these filters is low and so are the circuit complexity 
and the total delay time compared to those of the FIR realizations. Many methods for design 
of allpass based FDF have been described in (Laakso et al., 1996) and (Valimaki & Laakso, 
2001) and many more new methods (mainly for variable FDFs) have been proposed after 
that.  
One group in (Laakso et al., 1996) and (Valimaki & Laakso, 2001) consists of several WLS 
methods. Recently (Tseng, 2002) a new iterative WLS method was developed, but it was 
shown (Deng, 2006) that very often it is not converging. A new noniterative approach 
solving the minimization problem by using a matrix equation and thus avoiding the 
convergence problems was advanced in (Deng, 2006). Both methods are rigorously proven 
and are producing very impressive results (very low frequency response error), but as with 
the general IIR methods, the TF order is very high (35 for example), each of the multiplier 
coefficients is represented by polynomial of 5th or 6th order (making thus the total number of 
the coefficients higher than 200). Then 100 sets of coefficients are calculated to cover the 
frequency range from 0 to 0.9π, and another 30 sets are calculated to cover the range of FD 

 

from -0.5 to 0.5. And, if the required FD is not coinciding with some of these 30 sets, new 
coefficients are calculated using a polynomial interpolation. The method in (Deng, 2006) was 
further generalized in (Deng, 2009b) throughout an optimization of the range of the variable 
part of the delay-time, a usage of different order subfilters (canceling thus the application of 
the matrix approach), and a reformulation of the WLS design. As a result, the complexity of 
the final structure was additionally reduced (to only 158 filter coefficients, compared to 210 
and 175 for the example with the three methods), making this the best in the group. The 
structure complexity and the computational load, however, are still very high and we 
consider this approach to realize allpass-based VFDFs quite unpractical and not permitting a 
real time tuning.  
Another group of design methods encompasses all the minimax approaches to allpass FDFs 
design in terms of minimal phase error, phase-delay or group-delay error (Laakso et al., 
1996). An improved optimization method was proposed in (Yli-Kaakinen & Saramaki, 2004) 
to overcome the problems with the convergence when designing VFDFs. It is based on a 
gradual increase of the filter order and optimization in minimax sense to obtain optimal 
values for the adjustable parameters. This method is addressing the famous “gathering 
structure” (Makundi et al., 2001), widely used for realization of allpass-based VFDFs. 
Recently another method, approximately formulating the minimax design as a linear 
programming problem, solved noniteratively or iteratively, was advanced (Deng, 2010b). 
These methods are efficient and the results are impressive, but the design procedures, 
including complicated optimizations, are quite difficult to be applied in an engineering 
design. 
The third and most popular group of methods is the maximally-flat design of allpass FDFs 
based on Thiran approximation (Thiran, 1971), giving a closed-form solution for the TF 
coefficients. The Thiran-based design of VFDF is somehow connected to the gathering struc-
ture, which permits very easy real-time tuning by recalculating and reprogramming a single 
coefficient value. This structure was criticized recently for its long critical path and big 
difference between the coefficient values (requiring longer wordlength) and an improved 
structure was proposed in (Cho et al., 2007). Another way to use Thiran approximation but 
to avoid usage of gathering structure to realize VFDF (and thus to avoid the division 
operation in the recalculation of the coefficients) was proposed in (Hachabiboĝlu et al., 
2007) and it is called “root displacement interpolation (RDI) method” (See Sect. 6.1). The 
resulting structure, however, is quite complicated, the range of tuning is narrow and the 
tuning error is quite high.  
All general IIR and allpass-based VFD filters are having a common drawback, consisting of 
considerable transients appearing every time when the filter is tuned. Suppression of these 
transients is a difficult problem, several methods to solve it are discussed in (Valimaki & 
Laakso, 1998); (Valimaki & Laakso, 2001); (Makundi et al., 2002) and (Hachabiboĝlu et al., 
2007), but publications on this topic are very few and a lot more remains to be done. 
The main aim of the present chapter is to investigate and compare the existing and to deve-
lop new methods of design, realization and tuning of allpass-based FDFs and to increase the 
accuracy throughout minimization of their sensitivities. It will permit more efficient multi-
plierless realizations, shorter wordlength and lower power consumption. The design 
procedures should be straightforward, without iterative and complicated optimization 
steps, in order to be easily used by practicing engineers and the structures have to be with 
the lowest possible TF order and complexity, in order to be easily tuned in real time. 
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2. Low-Sensitivity Design Principles 

It is clear from the above considerations that allpass based FDFs (with fixed and variable 
FD) are most appropriate for almost all practical applications, providing lower order TF, 
low complexity and low total delay-time realizations, permitting an easy real-time FD 
tuning.  
We select to use the Thiran approximation procedure (Thiran, 1971) for designing allpass 
based FD digital filters with maximally flat group delay response. This procedure gives an 
easy way to express the TF coefficients ak as a function of the desired fractional delay 
parameter value D: 
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In the literature very often this allpass TF is realized as a direct form (2N + 1 multipliers and 
N delays are needed for the realization) or a lattice structure (2N multipliers and N delays), 
which are by far non-canonic with respect to the multipliers number (a canonic allpass 
structure of N-th order should contain only N multipliers) and the direct structure is also 
very sensitive to the changes of the coefficient values. The strategy to achieve our aim is 
based on our approach, described in (Stoyanov et al., 2007) and using (when possible) a 
cascade realization of the allpass TF. It is well known that a cascade realization of the allpass 
TF will decrease considerably the overall sensitivity and will open the way for further 
sensitivity reduction. To achieve this we propose, after decomposing the allpass TF to first- 
and second-order terms, to minimize the sensitivities of the individual first- and second-
order allpass sections, realizing each real pole or couple of complex-conjugate poles. This 
minimization may consist of a careful selection of proper sections (there are too many 
allpass sections already known) according to the position of the poles in the z-plane or of 
development of new allpass sections when there is no low sensitivity realizations readily 
available for given pole positions. These sections should be with canonic structures with 
respect to the number of the multipliers and the delay elements. The new low-sensitivity 
sections could be developed using the coefficient conversion method, proposed by 
Nishihara (Nishihara, 1984) or some other known methods. 
We choose to use the classical (normalized) sensitivity of the phase response    to the 
changes of the multiplier coefficients km  
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For evaluation of the sensitivity to the changes of all the multiplier coefficients, neccessary 
as a figure of merit in a case of sensitivity minimization or as a measure when different 
realizations are compared, we can use the worst-case sensitivity 
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or the so called Schoeffler (statistical) sensitivity, employing squared addends in (4). Both 
sensitivities are easily calculated for every given section topology by using the package 
PANDA (Sugino & Nishihara, 1990). 
Very convenient tool to evaluate the sensitivity of second-order sections when realizing 
poles in different areas within the unit-circle is the pole-density for given multiplier 
coefficients wordlength, but there are some problems in calculating this density of sections 
obtained throughout a coefficient conversion. 
Decreasing the sensitivity (throughout a proper design) would reduce the error of the fixed 
FD filter realizations in a limited wordlength environment especially when a fixed-point 
arithmetic is used. In a case of variable FD filters it will improve additionally the accuracy of 
tuning, as lower sensitivity means more possible values of the FD for given multiplier 
coefficients wordlength. Instead of higher accuracy, the low sensitivity could be used to 
decrease the power consumption and the computational load by using a shorter wordlength 
and this is of a prime importance when realizing different portable devices. 
Many low-sensitivity filter (and allpass) sections have been developed through the years, 
but mainly to improve the performance of different narrowband and very selective 
amplitude filters, having their TF poles usually situated in the area near unity in the z-plane. 
These sections might not be useful to realize low-sensitivity phase and FD filters because 
their TF poles could be located in some other areas of the unit-circle. Because of that, our 
consideration starts with a study of the typical pole positions of the TFs obtained using the 
Thiran approximation. 

 
3. FD Allpass Transfer Functions Poles Loci Investigations 

The sensitivities of the realizations are strongly depending on the position of their TF poles 
in the z-plane, so it is important to know how the poles of the allpass-based FD filters are 
situated there. 

 
3.1 Real poles behavior 
The possible FD TF real poles are positioned differently depending on N and D as follows: 

1. Odd order FD TF and NDN 1  – the real pole is negative. When the FD 
parameter values are increasing from 1N  to N , the possible pole positions are moving 
from 1z  to the area near 0z  (as case 1 in Fig. 1). 

2. Odd order FD TF and ND   – the real pole is positive and increasing D  to infinity 
moves the pole from the area near 0z  to the area near 1z  (as case 2 in Fig. 1). 

3. Even order FD TF and NDN 1  - there are one negative and one positive real 
poles as shown in the Fig. 1 for sixth order FD TF. When the FD is increasing from 1N  to 
N , these two poles are moving as in the above mentioned cases 1 and 2.  
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2. Low-Sensitivity Design Principles 

It is clear from the above considerations that allpass based FDFs (with fixed and variable 
FD) are most appropriate for almost all practical applications, providing lower order TF, 
low complexity and low total delay-time realizations, permitting an easy real-time FD 
tuning.  
We select to use the Thiran approximation procedure (Thiran, 1971) for designing allpass 
based FD digital filters with maximally flat group delay response. This procedure gives an 
easy way to express the TF coefficients ak as a function of the desired fractional delay 
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N delays are needed for the realization) or a lattice structure (2N multipliers and N delays), 
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allpass sections already known) according to the position of the poles in the z-plane or of 
development of new allpass sections when there is no low sensitivity realizations readily 
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or the so called Schoeffler (statistical) sensitivity, employing squared addends in (4). Both 
sensitivities are easily calculated for every given section topology by using the package 
PANDA (Sugino & Nishihara, 1990). 
Very convenient tool to evaluate the sensitivity of second-order sections when realizing 
poles in different areas within the unit-circle is the pole-density for given multiplier 
coefficients wordlength, but there are some problems in calculating this density of sections 
obtained throughout a coefficient conversion. 
Decreasing the sensitivity (throughout a proper design) would reduce the error of the fixed 
FD filter realizations in a limited wordlength environment especially when a fixed-point 
arithmetic is used. In a case of variable FD filters it will improve additionally the accuracy of 
tuning, as lower sensitivity means more possible values of the FD for given multiplier 
coefficients wordlength. Instead of higher accuracy, the low sensitivity could be used to 
decrease the power consumption and the computational load by using a shorter wordlength 
and this is of a prime importance when realizing different portable devices. 
Many low-sensitivity filter (and allpass) sections have been developed through the years, 
but mainly to improve the performance of different narrowband and very selective 
amplitude filters, having their TF poles usually situated in the area near unity in the z-plane. 
These sections might not be useful to realize low-sensitivity phase and FD filters because 
their TF poles could be located in some other areas of the unit-circle. Because of that, our 
consideration starts with a study of the typical pole positions of the TFs obtained using the 
Thiran approximation. 

 
3. FD Allpass Transfer Functions Poles Loci Investigations 

The sensitivities of the realizations are strongly depending on the position of their TF poles 
in the z-plane, so it is important to know how the poles of the allpass-based FD filters are 
situated there. 

 
3.1 Real poles behavior 
The possible FD TF real poles are positioned differently depending on N and D as follows: 

1. Odd order FD TF and NDN 1  – the real pole is negative. When the FD 
parameter values are increasing from 1N  to N , the possible pole positions are moving 
from 1z  to the area near 0z  (as case 1 in Fig. 1). 

2. Odd order FD TF and ND   – the real pole is positive and increasing D  to infinity 
moves the pole from the area near 0z  to the area near 1z  (as case 2 in Fig. 1). 

3. Even order FD TF and NDN 1  - there are one negative and one positive real 
poles as shown in the Fig. 1 for sixth order FD TF. When the FD is increasing from 1N  to 
N , these two poles are moving as in the above mentioned cases 1 and 2.  
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3.2 Complex-conjugate poles behavior 
The complex-conjugate poles behavior falls into two categories regarding the range of the 
FD parameter values. 

1. NDN 1  – the complex-conjugate poles pairs are situated around the area 
0z  and can be either with positive or negative real part depending of a given FD 

parameter value as can be seen from Fig. 1. 

2. ND   – the behavior of the poles is more dynamic. The complex-conjugate poles 
are positioned mainly in the right half of the unit circle and only the higher order TFs have 
poles in the left half, as illustrated in Fig. 1. The dashed line with number 3 shows the poles 
movement when increasing the FD parameter values to infinity. 

 
Fig. 1. Possible poles position of real poles (for odd-order TF) and of all the poles of sixth 
order allpass FD TF. 

 
4. Allpass Sections Sensitivities Study 

4.1 First order allpass sections 
It follows from Fig. 1 that if a cascade realization of the FD allpass filters would be used, as 
the possible real pole positions are scattered all around the real axes, first-order allpass 
sections with low sensitivities for all these positions will be needed. About 20 such sections, 
including several newly developed, have been investigated and compared in (Stoyanov & 
Clausert, 1994) and it was shown that several low-sensitivity sections for every real pole-
position could be found. We select to use four of them, shown in Fig. 2, namely the ST1 
section, providing low-sensitivity for poles near z=1, MH1 and SC, having low sensitivity 
for poles near z=0 and SV section for poles near z=-1. Their TFs are: 
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Fig. 2. Different first-order allpass sections. 

The closed form solutions for their TF coefficients for given FD parameter D are: 
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Fig. 3. Worst-case phase-sensitivities of first order allpass sections for different pole-
positions. 
 
In Fig. 3 the worst-case phase-response-sensitivities of these four sections are given for 
realizations with different TF pole positions. It is clearly seen that there exists a proper 
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choice of sections for every possible pole position and the difference between the maximal 
values of the sensitivities may reach 10 times. 

 
4.2 Second order allpass sections 
There are a great number of second order allpass sections in the literature and we need some 
preliminary selection among them before starting deeper study. The complex-conjugate 
poles are positioned mainly in the right half of the unit circle and only rarely (for higher TFs 
order) in the left half, as illustrated in Fig. 1. Our extensive investigations show that the 
study, the classification and the selection of second order allpass sections will be eased if 
those complex-conjugate poles are grouped into 11 zones as shown in Fig. 4 for the upper 
half of the unit circle. The poles positions of tenth order allpass based FD filter, for example, 
for values of D in the range N<D<50 will  scatter as  shown in Fig. 4, but for N<D<N+1 (the 
most typical case) they all will concentrate only in zones 1, 2, 5, 6. This is valid also for TFs of 
any order. Thus, we will need most often second-order allpass sections with minimized 
sensitivities for complex-conjugate poles pairs positioned in these zones in order to obtain 
low-sensitivity FD realization and better FD time accuracy. These zones are not typical for 
conventional selective filters, whose poles are situated usually near z = 1, so we selected 
initially the most popular sections, having canonic structures and known with low 
sensitivities. They are the Gray-Markel section (GM2), the Mitra and Hirano sections (MH2A 
and MH2B), the Kwan sections (KW2A and KW2B) and the low sensitivity section ST2A, 
shown in Fig. 5 and developed or discussed (together with many other sections with similar 
sensitivities) in (Topalov & Stoyanov, 1991); (Stoyanov & Nishihara, 1995); (Stoyanov & 
Kawamata, 1998); (Stoyanov & Kawamata, 2003); (Stoyanov et al., 2005) and in the 
references there-in. These sections are realizing the following TFs: 
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Fig. 4. Zoning of the z-plane for allpass FD TFs pole positions. 
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Fig. 5. Different popular canonic second-order allpass sections. 
 
It appeared, however, that all these sections, developed for selective filters applications, are 
not having enough low sensitivities for poles in zones 1, 2, 5, 6, as shown in Fig. 7, where 
especially wrong choice is ST2A. We have developed in (Ivanova & Stoyanov, 2007); 
(Nikolova et al., 2009) a new section, shown in Fig. 6 (we shall call it IS-section) and with 
minimized sensitivity for the TF poles situated exactly in zone 2. Its transfer function is 
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choice of sections for every possible pole position and the difference between the maximal 
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it is canonic with respect to the number of the multipliers and the delays, its round-off 
noises are constant and very low and it is structurally lossless and structurally bounded real. 
 

 
Fig. 6. IS allpass section, suitable for FD filter realizations with TF poles in zone 2. 
 

 
(a) zone 1 (b) zone 2 

 
(c) zone 5  (d) zone 6 

Fig. 7. Worst-case phase-sensitivities of second order allpass sections for TF poles in 
different zones. 

 

The phase sensitivities of the new allpass section together with these of the other second-
order allpass sections were investigated for complex-conjugate pole pairs in zones 1, 2, 5 
and 6. The results for the worst-case phase sensitivities are given in Fig. 7. It is obvious that 
the worst case phase sensitivity of the IS section is the lowest for small values of the FD 
parameter D ( ND  ) which correspond to TF poles situated in zone 2. The other allpass 
sections suitable for realizations of small values of FD are GM2 and MH2B (zone 6) and 
GM2 and MH2A (zone 1 and zone 5). KW2A, KW2B and ST2A (and the other numerous 
known sections) generally cannot be recommended and have to be investigated in every 
specific case. The TF coefficients as function of D are given in Tables 1–3. 
 

IS GM2 
a b a1 a2 

D
D 2  

))((
))((

21
21




DD
DD  

))((
))((

21
21





DD
DD  

)(
))((

2

22
2 



D
DD  

Table 1. IS and GM2 FD transfer function coefficients. 
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Table 2. MH2A and MH2B FD transfer function coefficients. 
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Table 3. KW2A and KW2B FD transfer function coefficients. 

 
5. Low-Sensitivity Design of fixed FD Filters  

Having in mind the principles of high-accuracy design from Sect. 2 and taking into account 
the results obtained here-above, we propose the following design procedure:  

1. Apply the Thiran approximation to obtain an allpass TF with order N ensuring a 
phase-delay error within given limits over the required frequency range. Broadening 
excessively this range will increase considerably the order N.  

2. Decompose the TF to first and second-order terms and check in which zones the 
poles of these terms are situated.  

3. Select or develop new first and second-order allpass sections providing lowest 
sensitivities for each real or couple of complex-conjugate poles.  
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4. For poles in some zones, as seen in Figs. 3 and 7, several allpass sections are equally 
good possible candidates. In such case compose several sets of allpass sections and 
investigate the overall sensitivity of each set to select the one with the lowest sensitivity. 
This procedure was applied to obtain an FD allpass structure realizing D=11.2. The 11th 
order TF has five pairs of complex-conjugate poles (two pairs in zone 1 and three – in zone 
2) and one real pole, as shown in Fig. 8. The most recommendable (from what follows from 
Figs. 3 and 7) set of allpass sections is suggested in the same figure, but the other possible 
four sets have also been considered. The worst-case phase sensitivities of the realizations, 
corresponding to all the five sets, are shown in Fig. 9. 

 
Fig. 8. Pole-position plot of 11-th order allpass FD filter realizing 211.D . 
 

 
Fig. 9. Worst-case phase-sensitivities of different sets of sections realizing an 11-th order 
allpass-based FD TF with 2.11D . 
 
It is seen from Fig. 9 that the method is working properly and two of the sets are by far 
worst than the other three. It is amazing that for this specific example there are three sets of 
allpass sections that are having very similar overall worst-case sensitivity and the final 
choice has to be made after considering other details, like total number of adders, range of 

 

values of multiplier coefficients and deterioration of the delay response after the coefficients 
quantization. 
The reduction of the overall sensitivity permits a considerable shortening of the coefficients 
wordlength followed by more efficient multiplierless implementation. We have applied this 
approach in (Ivanova et al., 2005) and after deriving closed form expressions for the 
coefficients of the allpass sections given in Sect. 4, we have obtained multiplierless 
realizations with no more than three adders per coefficient. A further improvement of the 
multiplierless design was achieved in (Stoyanov et al., 2009) by applying a genetic algorithm 
to optimize the values of the coefficients within the set of possible values limited by the 
quantization. 

 
6. Low-Sensitivity Design and Implementation of Variable FD Filters 

6.1 Design procedure 
The calculation of the coefficients obtained by Thiran approximation (1) include too many 
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where d is the fractional part of the phase-delay and NDd  . 
Then, the allpass TF (2) was given in the form 

 ,
]ˆ...ˆ)[(

]ˆ...ˆ)[()(
)(

N
N

NN
N

AP zazadg
zzaadgzH 






 1

1

1
1

1
 (19) 

and the coefficient )(dg  was approximated using the truncated Maclaurin series as 
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where I is the order of the approximating polynomial. The structure obtained through this 
method is called “gathering structure”. Even though very famous, this structure has many 
drawbacks:  

(a) it contains a great number of multipliers and adders leading to long critical paths;  
(b) as any direct structure it has higher sensitivity; 

(c) for higher TF order N there is a big difference between the smallest and the biggest 

coefficient (about 210  for 2N , 2I ; about 310  for 2N , 3I  and 510  for 3N , 
3I ), requiring very large wordlength.  
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4. For poles in some zones, as seen in Figs. 3 and 7, several allpass sections are equally 
good possible candidates. In such case compose several sets of allpass sections and 
investigate the overall sensitivity of each set to select the one with the lowest sensitivity. 
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Figs. 3 and 7) set of allpass sections is suggested in the same figure, but the other possible 
four sets have also been considered. The worst-case phase sensitivities of the realizations, 
corresponding to all the five sets, are shown in Fig. 9. 

 
Fig. 8. Pole-position plot of 11-th order allpass FD filter realizing 211.D . 
 

 
Fig. 9. Worst-case phase-sensitivities of different sets of sections realizing an 11-th order 
allpass-based FD TF with 2.11D . 
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worst than the other three. It is amazing that for this specific example there are three sets of 
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where I is the order of the approximating polynomial. The structure obtained through this 
method is called “gathering structure”. Even though very famous, this structure has many 
drawbacks:  

(a) it contains a great number of multipliers and adders leading to long critical paths;  
(b) as any direct structure it has higher sensitivity; 

(c) for higher TF order N there is a big difference between the smallest and the biggest 

coefficient (about 210  for 2N , 2I ; about 310  for 2N , 3I  and 510  for 3N , 
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To avoid them, the following representation was proposed in (Cho et al., 2007): 
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where P is the order of the approximating polynomial and it is in the range INPN  . 
We shall call the variable structure obtained by using (21) “Cho-Parhi-structure”. It has less 
multipliers and shorter critical path, compared to gathering structure, and similar values of 
the coefficients mnc  (21). 
We found in (Nikolova & Stoyanov, 2008) that it is possible to obtain even more efficient 
variable realizations by expressing each transfer function coefficients ka  (2) as a Taylor 
series expansion with respect to d and then to truncating after the linear, quadratic or cubic 
term (T = 1, 2, 3) depending on the desired accuracy. To achieve the tuning in real time we 
propose the following design procedure: 

1. Select of the allpass TF order corresponding to given requirements (desired 
fractional delay value d and/or the bandwidth with maximally flat phase delay response). 

2. Obtain an allpass FD filter using Thiran approximation. 

3. Taylor series expansion of each TF coefficient and truncation after the linear (when 
only adjustment of the phase delay is required), quadratic or cubic term (if tuning over 
larger range of values of the phase delay is required). 

4. Realize all the multiplier coefficients as composite multipliers (see Figs. 10, 11). 

The proposed design procedure is simple to use and the obtained structures have no critical 
path. The method can be applied for an arbitrary TF order but in the cases of first and 
second order TFs it allows to implement structures different from direct form and to 
minimize the sensitivity of the realizations. For the low-sensitivity structure IS (Fig. 6), for 
example, the coefficients are expressed by d as 
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After expanding (22) to Taylor series and truncating after the quadratic or the cubic term, we 
get correspondingly: 
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All these coefficients have homogenous structure, they do not include division operation 
and can be realized as composite multipliers containing fixed and variable multipliers. The 
composite multiplier realizations for second and third order Taylor approximation of a are 
shown in Fig. 10 and Fig. 11. 
 

 
Fig. 10. Composite variable multiplier realization of a  (23) after a second order Taylor 
approximation. 

 

 
Fig. 11. Composite variable multiplier realization of a  (24) after a third order Taylor 
approximation. 
 
It is worth mentioning that some of the fixed multiplier coefficients values, obtained after 
the Taylor series expansions (23), (24), are machine representable (they have values i 2 ) 
and will be realized by using only shifts and adds. In fact, in Fig. 10 and 11 all fixed multi-
pliers are of this type and thus the complexity of the composite multipliers is kept very low. 
The RDI-method (Hachabiboĝlu et al., 2007), is using two Nth order allpass FD TFs 
approximating different FD values 1D  and 2D  to obtain a new allpass FD filter with phase 
delay time iD  such that 21 DDD i  . The denominator of (2) (the denominators of the two 
initial allpass transfer functions) is represented as (Hachabiboĝlu et al., 2007): 
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where  *
,, , kiki cc  is k-th complex-conjugate pole pair and ir  is the real pole of the filter with 

TF )(zHi  (2). The complex-conjugate poles (for real pole is the same procedure) are sorted 
with respect to their angles and are paired according to their angular proximity. The 
interpolated complex poles are calculated from the paired poles as 

 ,ρ]ρ[ ,,int, kkk ccc 211   (26) 
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TF )(zHi  (2). The complex-conjugate poles (for real pole is the same procedure) are sorted 
with respect to their angles and are paired according to their angular proximity. The 
interpolated complex poles are calculated from the paired poles as 
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where ρ  is a constant between 0 and 1. This can be realized using only adders and 
multipliers, as shown in (Hachabiboĝlu et al., 2007), and the phase-delay time iD  can be 
tuned within the range 21 DDD i   by trimming only the constant ρ . This method is not 
connected to any particular realization of the initial allpass filters of order N, so the 
sensitivity cannot be an object of consideration in this case. Two disadvantages are readily 
seen, however: quite complicated circuitry (two allpass filters plus four additional 
multipliers) and narrow range of tuning of D with growing error of tuning in the middle of 
this range. 

 
6.2 Accuracy investigations 
To compare the accuracy of the first three methods, considered in Sect. 6.1, we have 
designed and investigated realizations and tuning in the range 5251 .. D (i.e. 50.d ) of 
second order allpass FD filters. For the polynomial approximation of the TF coefficients 
truncation  after the  third  order  term was  used, i.e.  3I  (20), 3P  (21) and 3T  (for  
 

 
Fig. 12. Gathering structure realizing a second-order variable FD allpass filter (with I = 3). 

 
Fig. 13. Cho-Parhi structure realizing a second-order variable FD allpass filter (P = 3). 

 

our method) circuit-diagrams so obtained are given in Figs. 12, 13 and 14. For our method, 
the IS-section (Fig. 6) with composite multipliers was used. The values of the coefficients of 
the three realizations are given in Table 4, Table 5, and Eq. (24), correspondingly. 
 

 
Fig. 14. IS structure realizing a second-order variable FD allpass filter with T = 3. 
 

kâ  )(dg  

811 ê  112 ê  08333300 .g  

221 ê  122 ê  04861101 .g  

  02141202 .g  
  008439403 .g  

Table 4. TF coefficients of gathering structure. 
 

-0.66666711c  0.22222221c  -0.07407431c  
0.08333312c  0.03472222c  -0.02719932c  

Table 5. TF coefficients of Cho-Parhi–structure. 
 
In Fig. 15 the worst-case phase sensitivities of the three realizations for several values of the 
fractional part d of the phase-delay time are given. It is seen that our approach and the Cho-
Parhi method are decreasing considerably the sensitivity, compared to that of the gathering 
structure, for 50.d  (our structure is behaving better than that of Cho-Parhi for positive 
values of d and it is opposite for the negative values). For small values of d our structure is 
the best, but generally the IS and the Cho-Parhi structures are having similar sensitivities. 
The possible explanation for this is that the Cho-Parhi approach, when reducing the range of 
values of the multiplier coefficients, compared to those of the gathering structure, is 
decreasing the largest values. It is well known, that when the values of the multiplier 
coefficients are decreased, the sensitivities to these coefficients are decreased too. 
In Table 6 the complexities of the three variable realizations are compared. The Cho-Parhi– and 
the IS- variable structures are having an equal number of multipliers (three of the multiplier 
coefficients in IS are machine representable and will be realized by using only adds and shifts), 
but the IS-structure has only two delays, it is not having a critical path and it will be shown in 
the Experiments that it is behaving better in a limited wordlength environment. 
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The RDI-method is not considered here, as it is not connected to some specific realization. Its 
accuracy is investigated in the Experiments (Sect. 7). 
 

 
Variable 

IS  
structure 

Gathering 
structure 

Cho-Parhi 
structure 

 3T  3I  3P  
Multipliers 12 (9) 13 9 

Adders 14 9 8 
Delay 

elements 
2 4 4 

Table 6. Comparison of the complexity of the structures. 
 

 
Fig. 15. Worst-case phase-sensitivities of second-order allpass based FD filter ( 3I , 3P , 

3T ). 

 
7. Experiments 

In order to verify the proposed low-sensitivity design procedure and to investigate how the 
FD time accuracy is maintained after coefficient quantization, we have designed and simulated 
all the five realizations considered in Sect. 5 (11th order TF realizing D=11.2). The phase delay 
responses of the quantized TFs are given in Fig. 16 (without these of 2GM2+3IS+SC, almost 
fully coinciding with 2GM2+3IS+MH1, as it might be anticipated from Fig. 7). The higher 
overall sensitivity of the 2KW2A+2KW2B+IS+SV-structure (WSmax=669 in Fig. 9) is the reason 
for its poor performance in a limited wordlength environment – the phase delay error for low 
frequencies is considerable even after a mild quantization down to 4 bits in CSD code (11.235 
instead of 11.2 in Fig. 16a) and this response is almost totally destroyed for 2 bits wordlength. 
For the best structure (2MH2A+3IS+MH1) this error is almost negligible – 11.195 instead of 
11.2 (Fig. 16d) and is quite acceptable even for wordlength of only 2 bit. The other sets from 
Sect. 5 are behaving as it could be predicted from Fig. 7. The main conclusion from these 

 

experiments is that our approach is working very successfully and is ensuring a considerable 
improvement of the accuracy in a limited wordlength environment. 
In order to observe and compare the tuning accuracy of the three methods and variable 
structures from Sect. 6 (gathering structure, Cho-Parhi-structure and IS-structure), we have 
designed three second order allpass FD filters with third order TF-coefficients 
approximation ( 3I , 3P , 3T ) and a given fractional delay parameter value 30.d . 
The results after the coefficient quantization are given in Fig. 17. Because of the lower 
sensitivity of the IS structure the tuning  accuracy is higher than that of the gathering 
structure and Cho-Parhi structure even when the TF coefficients are quantized to 2 
significant bits (in CSD code). The deviations from the desired phase delay (0.3 samples) of 
variable IS FD filter near DC for 4, 3 and 2 bits are correspondingly smaller than 510 , -0.002 
and -0.0179, while these of the gathering structure are -0.0029, -0.009 and -0.041 and of the 
Cho-Parhi-structure – -0.0018, -0.0086 and -0.041. 
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Fig. 17. Wordlength dependence of the accuracy of tuning of the phase delay of second 
order allpass FD filters realized as gathering-, Cho-Parhi- and IS-structures for 30.d  in a 
case of 3I , 3P , 3T . 
 

 
Fig. 18. Tuning accuracy comparison of the root-displacement method and our method for 
4th order allpass FD filters for different values of D. 
 
As the RDI-method is not connected to a specific structure, we have compared its accuracy 
to our method by simulating the tuning of the FD from 4.1 to 4.5 of the TFs with 4N . For 
our method a direct-form structure was used and the coefficients have been approximated 

 

by third-order Taylor polynomials. It is seen from Fig. 18 that the phase-delay of the RDI TF 
is having a higher error compared to that of our method and is losing its maximally-flat 
behavior for all intermediate values of D (note that for D = 4.5 there is no tuning in the case 
of RDI-method and thus no error will appear). It was found, additionally, that there is no 
direct connection between the desired value of the phase-delay D and the value of the 
tuning factor ρ (26) and this uncertainty in tuning cannot be avoided. 

 
8. Conclusions and Future Work 

In this chapter, a new approach to achieve a high accuracy of implementation and tuning of 
fixed and variable allpass-based fractional delay filters through sensitivity minimizations 
have been proposed. The method is based on a phase-sensitivity minimization of each 
individual first- and second-order allpass section in the filter cascade realization. It was 
shown that the poles of the FD TFs are taking positions not typical for the conventional 
filters. Then, after studying the possible combinations of real and complex-conjugate poles 
for different values of the FD parameter D and of the TF order N, it was proposed to divide 
the unit-circle to 11 zones and it was shown that FD TF poles (obtained using Thiran 
approximation) of most practical cases are located only in four of them and very often – in 
only one (zone 2). The behavior of the most popular allpass sections when having poles in 
these zones was investigated and it was shown that the proper selection of the sections is 
very important when trying to minimize the overall sensitivity. A new second-order allpass 
section, providing low sensitivity for zone 2 (and thus very suitable for high accuracy FD 
realizations) was developed by the authors. This section was turned also to tunable and high 
tuning accuracy was achieved. A new approach to obtain tunable allpass FD filters was 
developed and it was compared with the other known methods. It was shown also that the 
low sensitivity so achieved permits a very short coefficient wordlength, i.e. efficient 
multiplierless implementations, higher processing speed and lower power consumption. 
The proposed approach to design low-sensitivity allpass-based FD filters could be easily 
applied to further improve the performance of different allpass-based FD filters, obtained 
using most of the design methods overviewed in Sect. 1.3. provided that the allpass TFs of 
the filters and sub-filters in these realizations are clearly identifiable.  
It is well known that all IIR digital filters are producing different types of parasitic noises, 
especially when a fixed-point arithmetic is employed. These noises have not been 
investigated in the present chapter. It is also well known, however, that low sensitivity and 
low noises usually go together and as only allpass sections with very low sensitivities are 
considered here and they are selected and used in frequency ranges and TF pole-positions 
zones where they would exhibit their lowest sensitivities, it might be expected  that they will 
have very low level of the noises. These noises are expected to be low also because of the 
specific pole-positions of the FD filters – their TF poles are usually situated in the central 
part of the unit circle (as shown in Sect. 3.2), while noises are dangerously growing when the 
poles are approaching the unit-circle (typical for highly selective amplitude filters). All this 
should be verified, however, and it would be done in the future work. 
Next problem that should be addressed in the future is that of the transients, typical for all 
recursive realizations and affecting especially strongly all tunable IIR structures. These 
transients may compromise the proper work of the system for quite considerable time-
intervals, following the moments of trimming of some multipliers, and more efficient than 
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the presently known methods to decrease these effects should be developed and 
investigated. 
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1. Introduction 

In this chapter, the following abbreviations are used: Variable-denominator IIR VFD filters 
as VdIIR VFD filters. Fixed-denominator IIR VFD filters as FdIIR VFD filters. Allpass VFD 
filters as AP VFD filters. FIR VFD filters the same as FIR VFD filters. Symbol t is used to 
represent fractional delay (instead of the symbol d normally used to denote the operation of 
differentiation). Five frequently referenced design methods are abbreviated for ease of 
reference in Sections 5-8 as: (Zhao & Kwan, 2007) as (ZK); (Kwan & Jiang, 2009a) as (KJ); 
(Tsui et al., 2007) as (TCK); (Lee et al., 2008) as (LCR); and (Lu & Deng, 1999) as (LD). 
 
Variable fractional delay (VFD) digital filters have various applications in signal processing 
and communications (Laakso et al., 1996). So far, finite impulse response (FIR) VFD digital 
filters have been studied and a number of design methods (Deng, 2001; Deng & Lian, 2006; 
Kwan & Jiang, 2009a, 2009b; Lu & Deng, 1999; Tseng, 2002a; Zhao & Yu, 2006) have been 
advanced. Since the frequency response of an FIR VFD filter is a linear function of its 
polynomial coefficients, an optimal design can be obtained by numerical procedures (Kwan 
& Jiang, 2009a, 2009b; Tseng, 2002a; Zhao & Yu, 2006) or in closed forms (Deng, 2001; Deng 
& Lian, 2006; Lu & Deng, 1999). In contrast to FIR VFD filter design, allpass (AP) VFD filter 
design faces additional challenges due to the existence of a denominator. Since allpass VFD 
filters have fullband unity magnitude responses, the problem of designing an allpass VFD 
filter is to minimize the approximation error of phase or group delay response between an 
allpass VFD filter to be designed and the ideal one. A number of algorithms (Lee, et al., 2008; 
Tseng, 2002a, 2002b) have been proposed based on this strategy. Another property of allpass 
VFD filters which has been exploited in (Kwan & Jiang, 2009a; Deng, 2006) is the mirror 
symmetric relation between the numerator and the denominator. Such algorithms (Kwan & 
Jiang, 2009a; Deng, 2006) minimize the approximation error in terms of frequency responses 
of the denominator. The resulting problem is nonconvex, which is either simplified and 
solved (Kwan & Jiang, 2009a) as a quadratic programming (QP) problem with positive-
realness-based stability constraints, or solved (Deng, 2006) in closed-form. 
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Results obtained in (Kwan & Jiang, 2009a, 2009b; 2007) indicate that general infinite impulse 
response (IIR) digital filters exhibit lower mean group delay (compared to allpass digital 
filters) and wider band characteristics (compared to allpass and FIR digital filters) in VFD 
filter design. In general, general IIR VFD filter design methods (Kwan et al., 2006; Kwan & 
Jiang, 2007, 2009a, 2009b; Tsui et al., 2007; Zhao & Kwan, 2005, 2007; Zhao et al., 2006) can be 
classified as two-stage approach and semi-integrated approach. Under the two-stage 
approach (Kwan et al., 2006; Kwan & Jiang, 2007, 2009a, 2009b; Zhao & Kwan, 2005, 2007; 
Zhao et al., 2006), a set of stable IIR digital filters with sampled fractional delays (FDs) are 
designed first, and then the polynomial coefficients are determined by fitting the obtained 
IIR FD filter coefficients in the least-squares (LS) sense. Under the semi-integrated approach 
(Tsui et al., 2007), direct optimization is carried out on the polynomial coefficients of each 
filter coefficient of the numerator. In (Kwan et al., 2006; Kwan & Jiang, 2007; Zhao & Kwan, 
2005, 2007; Zhao et al., 2006), both the numerator and denominator coefficients are variable. 
In (Kwan & Jiang, 2009a, 2009b; Tsui et al., 2007), only the numerator coefficients are 
variable. In (Kwan & Jiang, 2007), both variable and fixed denominators are considered.  
 
In this chapter, sequential and gradient-based methods are applied to design IIR VFD filters 
with variable and fixed denominators, but unlike (Kwan & Jiang, 2007), these methods are 
integrated design methods. Second-order cone programming (SOCP) is used to formulate 
the problem in the sequential design method, and in the initial design of the gradient-based 
design method. An advantage of using the SOCP formulation of the problem is that both 
linear and (convex) quadratic constraints can be readily incorporated. On the other hand, 
unlike the design algorithm of (Tsui et al., 2007), which models the denominator and 
optimizes the numerator separately, the proposed methods optimize them simultaneously 
during the design procedures. As described in this chapter, the sequential and especially the 
gradient-based design methods could achieve some improved results as compared to (a) our 
previous designs presented in (Zhao & Kwan, 2007) for variable-denominator IIR VFD 
filters, in (Kwan & Jiang, 2009a) and (Tsui et al., 2007) for fixed-denominator IIR VFD filters, 
and in (Kwan & Jiang, 2009a) for allpass and FIR VFD filters; and (b) the allpass (Lee et al., 
2008) and the FIR (Lu & Deng, 1999) VFD filters of other researchers. A preliminary version 
of the sequential design method can be found in (Jiang & Kwan, 2009b). The chapter is 
organized as follows: In Section 2, the weighted least-squares (WLS) design problem is 
formulated. A sequential design method is introduced in Section 3. Then, a gradient-based 
design method is introduced in Section 4. Four sets of filter examples are presented in 
Section 5 and their design performances using the proposed and a number of other methods 
are analyzed in Section 6. Section 7 gives a summary of the chapter. Finally, conclusions are 
made in Section 8.  

 
2. Problem formulation  
Let the ideal frequency response of a VFD digital filter be defined as 
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where 0 < α < 1, D denotes a mean group delay, and t denotes a variable fractional delay 
within the range of [−0.5, 0.5]. The transfer function of an IIR VFD filter can be expressed as 
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In (2)-(6), the superscript T denotes the transposition of a vector (or matrix). Each of the 
numerator coefficients pn(t) for n = 0, 1, …, N (or the denominator coefficients qm(t) for m = 1, 
2, …, M) can be expressed as an order K1 (or K2) polynomial of the fractional delay t as 
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(Tsui et al., 2007), direct optimization is carried out on the polynomial coefficients of each 
filter coefficient of the numerator. In (Kwan et al., 2006; Kwan & Jiang, 2007; Zhao & Kwan, 
2005, 2007; Zhao et al., 2006), both the numerator and denominator coefficients are variable. 
In (Kwan & Jiang, 2009a, 2009b; Tsui et al., 2007), only the numerator coefficients are 
variable. In (Kwan & Jiang, 2007), both variable and fixed denominators are considered.  
 
In this chapter, sequential and gradient-based methods are applied to design IIR VFD filters 
with variable and fixed denominators, but unlike (Kwan & Jiang, 2007), these methods are 
integrated design methods. Second-order cone programming (SOCP) is used to formulate 
the problem in the sequential design method, and in the initial design of the gradient-based 
design method. An advantage of using the SOCP formulation of the problem is that both 
linear and (convex) quadratic constraints can be readily incorporated. On the other hand, 
unlike the design algorithm of (Tsui et al., 2007), which models the denominator and 
optimizes the numerator separately, the proposed methods optimize them simultaneously 
during the design procedures. As described in this chapter, the sequential and especially the 
gradient-based design methods could achieve some improved results as compared to (a) our 
previous designs presented in (Zhao & Kwan, 2007) for variable-denominator IIR VFD 
filters, in (Kwan & Jiang, 2009a) and (Tsui et al., 2007) for fixed-denominator IIR VFD filters, 
and in (Kwan & Jiang, 2009a) for allpass and FIR VFD filters; and (b) the allpass (Lee et al., 
2008) and the FIR (Lu & Deng, 1999) VFD filters of other researchers. A preliminary version 
of the sequential design method can be found in (Jiang & Kwan, 2009b). The chapter is 
organized as follows: In Section 2, the weighted least-squares (WLS) design problem is 
formulated. A sequential design method is introduced in Section 3. Then, a gradient-based 
design method is introduced in Section 4. Four sets of filter examples are presented in 
Section 5 and their design performances using the proposed and a number of other methods 
are analyzed in Section 6. Section 7 gives a summary of the chapter. Finally, conclusions are 
made in Section 8.  
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All the polynomial coefficients an,k and bm,k are assumed to be real values. By stacking all an 
for n = 0 to N together, the numerator coefficient vector a can be defined as 
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Similarly, the denominator coefficient vector b can be defined as 
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Given a nonnegative weighting function W(ω,t), the WLS design problem can be expressed as 
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where x = [aT, bT]T, and the complex approximation error e(ω,t) is defined as 
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For the general IIR VFD filter design problem expressed in (19), there is an implicit stability 
requirement on the denominator Q(z,t), that is, all the roots of Q(z,t) for t  [−0.5, 0.5] 
should lie inside the unit circle on the z-plane. The derivations shown under Sections 2-4 
are formulated for VdIIR VFD filters which are applicable to FdIIR VFD filters by setting K2 
= 0. For K2 = 0, qm(t) = qm for m = 1 to M; hence, q(t) = q = [q1 q2 … qM]T and Q(z,t) = Q(z).  

 
 
 

3. Sequential design of IIR VFD digital filters 

The nonlinear nature of the general problem defined by (19)-(20) can be simplified using the 
Levy’s method (Levy, 1959), solved iteratively using Sanathanan and Koerner algorithm 
(Sanathanan & Koerner, 1963), and formulated as an iterative design problem for stable IIR 
digital filters by (Lu et al., 1998). In this section, the sequential design procedure for IIR VFD 
filters developed from (Lu et al., 1998) will be described first. Then, linear inequality 
constraints are introduced to guarantee the stability of a designed IIR VFD filter. 

 
3.1 Sequential design procedure 
The sequential design procedure starts from a specified initial point x(0). At the lth iteration  
(l = 1, 2, …), the integrand of the cost function in (19) is reformulated as 
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In (21), Re{·} denotes the real part of a complex variable. In (24), the superscript H represents 
the conjugate transpose of a complex-valued vector or matrix. Using (21), the cost function 
of (19) can be expressed in the following quadratic form 
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the conjugate transpose of a complex-valued vector or matrix. Using (21), the cost function 
of (19) can be expressed in the following quadratic form 

       
( ) ( ) ( ) ( 1) ( ) ( ) ( 1) ( 1)( ) 2l l l T l l l T l lJ c    x x G x x g  (25) 
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Note that the matrix G(l-1) is symmetric and positive semidefinite (PSD). Therefore, only the 
upper (or lower) triangular part of G(l-1) needs to be computed. In practice, the integrals in (26)-
(28) can be replaced by finite summations of grid points taken from [0,  π] × [-0.5, 0.5]. In 
practice, minimization of (25) is a straight-forward task. However, if linear or nonlinear 
constraints (such as the linear stability constraints (34) or (35) introduced later in Section 3.2) 
are required to be incorporated, (25) can be reformulated as (29) by introducing an auxiliary 
variable ε(l). Consequently, at the lth iteration, the WLS design problem can be cast as the 
following SOCP problem 

       
( )min l  (29) 

                                                     
2( 1) ( ) ( ) ( 1) ( )s.t. 2l l l T l l  G x x g

 

(29a) 

where ( 1)lG  = [G(l-1)]1/2, and .  denotes the Euclidean norm of a vector. In (29), the decision 
variables are x(l) and ε(l). The constraint (29a) is a hyperbolic constraint, which can be further 
transformed into a second-order cone (SOC) constraint.  
 
To guarantee the stability of a design obtained by (29), either the stability constraints (34) or 
(35) are to be incorporated into (29). Also, to improve the numerical robustness of the 
sequential design procedure, the filter coefficients x(l) are updated using the iteration scheme 
(Jiang & Kwan, 2009a; Lu et al., 1998; Lu, 1999; Tsang, 2004; Tsang & Lee, 2002) as 

       
( ) ( 1) ( 1)( ) (1 )l l l     x x x  (30) 

where 0 < λ < 1 is a relaxation constant, and Ψ represents the mathematical operation of 
mapping a x(l-1) to a solution x(l) by (29). Our design experience indicates that generally λ can 
be chosen within the range [0.1, 0.5]. A larger λ could cause numerical instability. Stability 
guarantee and robustness improvement serve different purposes and do not affect each 
other. 
 
The sequential design procedure continues until the following condition is satisfied 
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where μ is a specified positive small tolerance and J(x) is the cost function defined in (19). 
The stopping criterion (31) means that the sequential design procedure is to be terminated 
as the WLS error cannot be further reduced in a meaningful manner. It should be 
emphasized that if [J(x(l-1))−J(x(l))]/J(x(l-1)) < 0, we have J(x(l-1)) < J(x(l)), which means the 
performance of the current design is worse than that of the previous design, the filter 
coefficients obtained at the previous iteration through (30) should be restored and adopted 
as the final design. 

 
3.2 Stability consideration  
The IIR VFD filter designed by the sequential design procedure presented in Section 3.1 
cannot definitely guarantee the stability of obtained IIR VFD filters. Therefore, stability 
constraints have to be incorporated. For ease of explanation, a stability constraint based on 
the positive realness is first introduced for designing IIR VFD filters with the fixed 
denominator. Then, the stability constraint can be readily extended to the case of designing 
IIR VFD filters with the variable denominator.  
 
A sufficient condition for the stability of designed IIR digital filters has been introduced in 
(Dumitrescu & Niemistö, 2004), which is stated as: If Q(l-1)(z) is a Schur polynomial, i.e., all 
the roots of Q(l-1)(z) lie inside the unit circle, and the transfer function R(l)(z) = Q(l)(z)/Q(l-1)(z) 
is strictly positive real (SPR), i.e., 

        ( )Re ( ) 0,    [0, ]l jR e       (32) 

then all the convex combination of Q(l-1)(z) and Q(l)(z), i.e., Q(l)(z) = (1−)Q(l-1)(z)+Q(l)(z) for 
  [0, 1], is a Schur polynomial. According to this condition, a stability domain with an 

interior point q(l-1) can be defined as Ds = {q(l)| R(l)(z) is SPR}. Note that the condition that 
R(l)(z) is SPR is equivalent to requiring that 
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is real and positive on the unit circle. Since the denominator of (33) is always positive on the 
unit circle, it follows that the symmetric numerator polynomial of (33) must be positive on 
the unit circle for ω  [0, π], which can be cast as a linear matrix inequality (LMI) constraint 
independent of frequency ω (Dumitrescu & Niemistö, 2004). Here, the stability constraint 
R(l)(ejω)+R(l)(e-jω) > 0 can be expressed in the form of linear inequality constraints as 
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where ν is a specified small positive number. If variable denominator is utilized in H(z,t), the 
term q(l)Tφ2(ejω) in (34) should be replaced by b(l)Tu2(ejω,t). Thereby, (34) can be expressed as 
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Note that the matrix G(l-1) is symmetric and positive semidefinite (PSD). Therefore, only the 
upper (or lower) triangular part of G(l-1) needs to be computed. In practice, the integrals in (26)-
(28) can be replaced by finite summations of grid points taken from [0,  π] × [-0.5, 0.5]. In 
practice, minimization of (25) is a straight-forward task. However, if linear or nonlinear 
constraints (such as the linear stability constraints (34) or (35) introduced later in Section 3.2) 
are required to be incorporated, (25) can be reformulated as (29) by introducing an auxiliary 
variable ε(l). Consequently, at the lth iteration, the WLS design problem can be cast as the 
following SOCP problem 
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where ( 1)lG  = [G(l-1)]1/2, and .  denotes the Euclidean norm of a vector. In (29), the decision 
variables are x(l) and ε(l). The constraint (29a) is a hyperbolic constraint, which can be further 
transformed into a second-order cone (SOC) constraint.  
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(35) are to be incorporated into (29). Also, to improve the numerical robustness of the 
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where μ is a specified positive small tolerance and J(x) is the cost function defined in (19). 
The stopping criterion (31) means that the sequential design procedure is to be terminated 
as the WLS error cannot be further reduced in a meaningful manner. It should be 
emphasized that if [J(x(l-1))−J(x(l))]/J(x(l-1)) < 0, we have J(x(l-1)) < J(x(l)), which means the 
performance of the current design is worse than that of the previous design, the filter 
coefficients obtained at the previous iteration through (30) should be restored and adopted 
as the final design. 

 
3.2 Stability consideration  
The IIR VFD filter designed by the sequential design procedure presented in Section 3.1 
cannot definitely guarantee the stability of obtained IIR VFD filters. Therefore, stability 
constraints have to be incorporated. For ease of explanation, a stability constraint based on 
the positive realness is first introduced for designing IIR VFD filters with the fixed 
denominator. Then, the stability constraint can be readily extended to the case of designing 
IIR VFD filters with the variable denominator.  
 
A sufficient condition for the stability of designed IIR digital filters has been introduced in 
(Dumitrescu & Niemistö, 2004), which is stated as: If Q(l-1)(z) is a Schur polynomial, i.e., all 
the roots of Q(l-1)(z) lie inside the unit circle, and the transfer function R(l)(z) = Q(l)(z)/Q(l-1)(z) 
is strictly positive real (SPR), i.e., 
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is real and positive on the unit circle. Since the denominator of (33) is always positive on the 
unit circle, it follows that the symmetric numerator polynomial of (33) must be positive on 
the unit circle for ω  [0, π], which can be cast as a linear matrix inequality (LMI) constraint 
independent of frequency ω (Dumitrescu & Niemistö, 2004). Here, the stability constraint 
R(l)(ejω)+R(l)(e-jω) > 0 can be expressed in the form of linear inequality constraints as 
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where ν is a specified small positive number. If variable denominator is utilized in H(z,t), the 
term q(l)Tφ2(ejω) in (34) should be replaced by b(l)Tu2(ejω,t). Thereby, (34) can be expressed as 



Digital Filters186

       
   
   

( 1) ( ) ( 1)
2Re ( , ) ( , ) Re ( , )

  0, , 1, , ;    0.5,0.5 ,  1, ,

i i ij j jl T l l
j j j

i j

Q e t e t Q e t

i I t j J

  

 

  

     

u b  (35) 

 
4. Gradient-based design of IIR VFD digital filters 

In this section, a gradient-based design method for IIR VFD digital filters is presented. An 
initial design is first obtained by solving a SOCP problem, and a local search procedure is 
then applied to refine the design. 

 
4.1 Initial design using SOCP 

IIR VFD filter design using optimization is a non-convex problem and there could be many 
local minima on its error performance surface. Also, a large IIR VFD filter design problem 
involves many variables (N+1)(K1+1)+M(K2+1). In order to obtain a good initial design that 
would lead to a satisfactory final design, consider the following initial design problem 
derived from (19) by applying the Levy’s method (Levy, 1959) on e(w,t) to obtain 
e(w,t)Q(ejw,t) as 
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where G, g, and c can be readily obtained by replacing the weighting function W(l-1)(ω, t) of 
(22) in (26)-(28) by W(ω, t) of (19). Similar to (25)-(29), the design problem (36) can be 
transformed into the following SOCP problem as 

       
min   (37) 

                                                                
2

s.t. 2 T  Gx x g

 

(37a) 

where the matrix G  = G1/2. 

 
4.2 Stability consideration 

In order to guarantee the stability of a designed IIR VFD filter, stability constraints should 
be incorporated in (37). The linear stability constraints (34) or (35) can be directly 
incorporated into the design problem (37). Besides (34) or (35), the following strategy can 
also be employed to ensure the stability. It is known that by suppressing 2( )q t , the poles 
can be forced to move towards the origin in the z-plane (Zhao & Kwan, 2007). To do so, a 
regularization term defined in (38) below is introduced as 
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By combining J2(x) with the cost function J1(x) of (36) through a regularization coefficient , 
the design problem (36) is then formulated as 
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where 

       
1 1 1 2

2 1

( 1)( 1) ( 1)( 1) ( 1)( 1) ( 1)

( 1) ( 1)( 1)

N K N K N K M K

M K N K

         

   

 
   

  

0 0
G G

0 V
 (42) 

In (42), 0m×n represents a zero matrix of size m-by-n. The design problem (41) can then be 
formulated as a SOCP problem similar to (37) as 

       
min   (43) 
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(43a) 

where 
~
G  = 


G 1/2. 

 
4.3 Local search 

Although both the design problem (37) subject to stability constraints (34) or (35) and the 
design problem (43) are convex and can be efficiently solved, the obtained design in either 
case may not be a truly (locally) optimal design in the WLS sense, since the cost function 
J1(x) of (36) is not equivalent to the original one in (19). Therefore, a local search should be 
performed to locate the local optimum near the initial design (obtained by solving (37) with 
appropriate stability constraints (34) or (35) or by solving (43)). Here, a general-purpose 
gradient-based optimization algorithm (e.g., quasi-Newton) is employed to achieve a local 
optimal design. Normally, such an algorithm requires a designer to provide subroutines to 
calculate the function value and the gradient at a given point. Thus, the formulas to 
calculate the gradients of J(x) defined in (19) can be derived as 
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In (44)-(45), the subscript * denotes complex conjugate operation. It is noted that if an initial 
design is stable, the IIR filter obtained by the local search is stable. It is because if any of the 
poles moves close to the unit circle, it will create a large approximation error; and in case the 
situation that a pole and a zero nearly cancel or cancel each other emerges, the error 
performance will degrade due to a reduced filter order. Since a gradient-based algorithm 
can only find local minima around an initial design, if pole-zero cancellation does not 
appear in an initial design, pole-zero cancellation is not likely to appear in the subsequent 
local search using a gradient-based algorithm. Furthermore, the step size of a gradient-based 
algorithm can be automatically adjusted to guarantee that the obtained filter in each 
iteration stays inside the stable domain. The above scheme works well in all our designs. In 
the designs, the optimization command ‘fminunc’ in MATLAB was adopted to perform the 
local search. The stability of a designed VdIIR VFD filter is ensured if  its maximum pole 
radius is within the unity circle at each of the fractional delay values obtained from a dense 
grid of fractional delay t  [-0.5, 0.5]. On the other hand, the stability of a designed FdIIR 
VFD filter can simply be checked by ensuring its maximum pole radius is within the unity 
circle. 

 
5. Design specifications  

In this section, four sets of filter examples are presented to demonstrate the effectiveness of 
the sequential and gradient-based design methods. For a fair comparison, at each of the four 
specified cutoff frequencies, all the three types (IIR, allpass, and FIR) of VFD filters are 
specified to have the same number of variable coefficients, i.e., (N+1)(K1+1)+M(K2+1) = 
MAP(K1+1) = (LFIR+1)(K1+1), where MAP and LFIR denote, respectively, the filter order of an 
allpass VFD filter and the filter order of an FIR VFD filter. To achieve a good IIR VFD filter 
design based on a general IIR digital filter, the denominator order needs not be as high as 
the numerator order. Therefore, in each of the IIR VFD filter designs, the denominator order 
M is chosen to be 6 which is smaller than the corresponding numerator order N. The filter 
specifications of the IIR VFD filters with variable and fixed denominators are summarized in 
Table 1 whereas the design specifications of allpass and FIR VFD filters are summarized in 
Table 2.  
 
 

α (K1, K2) (N, M, D) 

0.9625 
(5, 5) (49, 6, 25), (49, 6, 28), (49, 6, 31) 
(5, 0) (54, 6, 27), (54, 6, 30), (54, 6, 33) 

0.9500 
(5, 5) (46, 6, 23), (46, 6, 26), (46, 6 29) 
(5, 0) (51, 6, 26), (51, 6, 29), (51, 6 32) 

0.9250 
(5, 5) (41, 6, 21), (41, 6, 24), (41, 6, 27) 
(5, 0) (46, 6, 23), (46, 6, 26), (46, 6, 29) 

0.9000 
(5, 5) (36, 6, 18), (36, 6, 21), (36, 6, 24) 
(5, 0) (41, 6, 21), (41, 6, 24), (41, 6, 27) 

Table 1. IIR VFD filter specifications (Keys: : Normalized passband; K1 (K2): Numerator 
(Denominator) coefficient polynomial order; N (M): Numerator (Denominator) order; D: IIR 
mean group delay) 
 

α K1 (MAP, DAP) (LFIR, DFIR) 
0.9625 5 (56, 56) (55, 28) 
0.9500 5 (53, 53) (52, 26) 
0.9250 5 (48, 48) (47, 24) 
0.9000 5 (43, 43) (42, 21) 

Table 2. Allpass and FIR VFD filter specifications (Keys: : Normalized passband; K1: 
Coefficient polynomial order; MAP: Allpass order; DAP: Allpass mean group delay; LFIR: FIR 
order; DFIR: FIR mean group delay) 
 
The respective mean group delay is somehow related to (a) the numerator and denominator 
orders, N and M, for an IIR VFD filter; (b) the filter order MAP of an allpass VFD filter; and 
(c) the filter order LFIR of an FIR VFD filter. In Tables 1 and 2, the respective mean group 
delay is chosen as: (a) D = the round up value of (N+M)/2 for an IIR VFD filter; (b) DAP = the 
filter order MAP for an allpass VFD filter; and (c) DFIR = the round up value of LFIR/2 for an 
FIR VFD filter. The choice of mean group delay values D = (N+M)/2 and (N+M)/2 3 
shown in Table 1 for all the IIR VFD filter design methods allows a comparison of their 
relative performances in order to determine the best design method upon which its best 
mean group delay value that yields a minimum erms can be determined by simulations to be 
described in Section 6.2. The design results obtained by the proposed designs are compared 
with those of the IIR VFD filters with variable denominators designed by (ZK), the IIR VFD 
filters with fixed denominators designed by (KJ) and (TCK), the allpass VFD filters designed 
by (KJ) and (LCR), and the FIR VFD filters designed by (KJ) and (LD). For fair comparisons, 
the weighting function W(ω,t) in (19) and (36) is always set equal to 1 for ω  [0, απ] and t 

 [−0.5, 0.5]. The relaxation constant λ used in (30) and the tolerance μ used in the stopping 
criterion (31) are chosen as 0.5 and 10-4, respectively. The stability constraints (35) are 
imposed on 21×21 discrete points evenly distributed over the domain [0, π] × [−0.5, 0.5]. For 
K2 = 0, the stability constraints (34) are imposed on 21 frequency points, which are equally 
spaced over the range [0, π]. The parameter ν in (34) and (35) are chosen as 10-3. The optimal 
value of  used in (46) is 10-10 (except for VdIIR VFD filters at  = 0.9625,  = 10-9; and for 
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In (44)-(45), the subscript * denotes complex conjugate operation. It is noted that if an initial 
design is stable, the IIR filter obtained by the local search is stable. It is because if any of the 
poles moves close to the unit circle, it will create a large approximation error; and in case the 
situation that a pole and a zero nearly cancel or cancel each other emerges, the error 
performance will degrade due to a reduced filter order. Since a gradient-based algorithm 
can only find local minima around an initial design, if pole-zero cancellation does not 
appear in an initial design, pole-zero cancellation is not likely to appear in the subsequent 
local search using a gradient-based algorithm. Furthermore, the step size of a gradient-based 
algorithm can be automatically adjusted to guarantee that the obtained filter in each 
iteration stays inside the stable domain. The above scheme works well in all our designs. In 
the designs, the optimization command ‘fminunc’ in MATLAB was adopted to perform the 
local search. The stability of a designed VdIIR VFD filter is ensured if  its maximum pole 
radius is within the unity circle at each of the fractional delay values obtained from a dense 
grid of fractional delay t  [-0.5, 0.5]. On the other hand, the stability of a designed FdIIR 
VFD filter can simply be checked by ensuring its maximum pole radius is within the unity 
circle. 

 
5. Design specifications  

In this section, four sets of filter examples are presented to demonstrate the effectiveness of 
the sequential and gradient-based design methods. For a fair comparison, at each of the four 
specified cutoff frequencies, all the three types (IIR, allpass, and FIR) of VFD filters are 
specified to have the same number of variable coefficients, i.e., (N+1)(K1+1)+M(K2+1) = 
MAP(K1+1) = (LFIR+1)(K1+1), where MAP and LFIR denote, respectively, the filter order of an 
allpass VFD filter and the filter order of an FIR VFD filter. To achieve a good IIR VFD filter 
design based on a general IIR digital filter, the denominator order needs not be as high as 
the numerator order. Therefore, in each of the IIR VFD filter designs, the denominator order 
M is chosen to be 6 which is smaller than the corresponding numerator order N. The filter 
specifications of the IIR VFD filters with variable and fixed denominators are summarized in 
Table 1 whereas the design specifications of allpass and FIR VFD filters are summarized in 
Table 2.  
 
 

α (K1, K2) (N, M, D) 

0.9625 
(5, 5) (49, 6, 25), (49, 6, 28), (49, 6, 31) 
(5, 0) (54, 6, 27), (54, 6, 30), (54, 6, 33) 

0.9500 
(5, 5) (46, 6, 23), (46, 6, 26), (46, 6 29) 
(5, 0) (51, 6, 26), (51, 6, 29), (51, 6 32) 

0.9250 
(5, 5) (41, 6, 21), (41, 6, 24), (41, 6, 27) 
(5, 0) (46, 6, 23), (46, 6, 26), (46, 6, 29) 

0.9000 
(5, 5) (36, 6, 18), (36, 6, 21), (36, 6, 24) 
(5, 0) (41, 6, 21), (41, 6, 24), (41, 6, 27) 

Table 1. IIR VFD filter specifications (Keys: : Normalized passband; K1 (K2): Numerator 
(Denominator) coefficient polynomial order; N (M): Numerator (Denominator) order; D: IIR 
mean group delay) 
 

α K1 (MAP, DAP) (LFIR, DFIR) 
0.9625 5 (56, 56) (55, 28) 
0.9500 5 (53, 53) (52, 26) 
0.9250 5 (48, 48) (47, 24) 
0.9000 5 (43, 43) (42, 21) 

Table 2. Allpass and FIR VFD filter specifications (Keys: : Normalized passband; K1: 
Coefficient polynomial order; MAP: Allpass order; DAP: Allpass mean group delay; LFIR: FIR 
order; DFIR: FIR mean group delay) 
 
The respective mean group delay is somehow related to (a) the numerator and denominator 
orders, N and M, for an IIR VFD filter; (b) the filter order MAP of an allpass VFD filter; and 
(c) the filter order LFIR of an FIR VFD filter. In Tables 1 and 2, the respective mean group 
delay is chosen as: (a) D = the round up value of (N+M)/2 for an IIR VFD filter; (b) DAP = the 
filter order MAP for an allpass VFD filter; and (c) DFIR = the round up value of LFIR/2 for an 
FIR VFD filter. The choice of mean group delay values D = (N+M)/2 and (N+M)/2 3 
shown in Table 1 for all the IIR VFD filter design methods allows a comparison of their 
relative performances in order to determine the best design method upon which its best 
mean group delay value that yields a minimum erms can be determined by simulations to be 
described in Section 6.2. The design results obtained by the proposed designs are compared 
with those of the IIR VFD filters with variable denominators designed by (ZK), the IIR VFD 
filters with fixed denominators designed by (KJ) and (TCK), the allpass VFD filters designed 
by (KJ) and (LCR), and the FIR VFD filters designed by (KJ) and (LD). For fair comparisons, 
the weighting function W(ω,t) in (19) and (36) is always set equal to 1 for ω  [0, απ] and t 

 [−0.5, 0.5]. The relaxation constant λ used in (30) and the tolerance μ used in the stopping 
criterion (31) are chosen as 0.5 and 10-4, respectively. The stability constraints (35) are 
imposed on 21×21 discrete points evenly distributed over the domain [0, π] × [−0.5, 0.5]. For 
K2 = 0, the stability constraints (34) are imposed on 21 frequency points, which are equally 
spaced over the range [0, π]. The parameter ν in (34) and (35) are chosen as 10-3. The optimal 
value of  used in (46) is 10-10 (except for VdIIR VFD filters at  = 0.9625,  = 10-9; and for 
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FdIIR VFD filters at  = 0.9,  = 0). At each iteration, the SOCP problems in (29), (37) and 
(43) are solved using SeDuMi (Sturm, 1999) under MATLAB environment. 

 
6. Performance analysis 

6.1 Error measurements and stability check 

To evaluate the performances of each designed VFD filter, the maximum absolute error emax, 
and the normalized root-mean-squared (RMS) error erms of its (a) frequency responses, (b) 
magnitude responses, and (c) fractional group delay responses are adopted and they are 
defined, respectively, by 

        max ( , ) ,  [0, ], [ 0.5,0.5]maxe e t t       (46) 
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where 
 

       ( , ) ( , ) ( , )j
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(53) 

 

In (53), τ(ω,t) denotes the actual fractional group delay of a designed VFD filter. Since the 
design problem is formulated in the WLS sense (see (19)), so the erms of the frequency 
responses is the most appropriate criterion for comparisons among different design 
methods. In case two designs have the same erms, other error measurements shall be 
compared. For each of the designed VdIIR VFD filters and AP VFD filters, a uniform grid 
consisting of 1001 discrete fractional delay values t were used to ensure all these 1001 VFD 
filters are stable. By checking individual maximum pole radius to be within the unity circle, 
each of the designed VFD filters has been verified to be stable.  

 
6.2 IIR VFD filter performances 

Based on the design specifications of Table 1, the error performances of the designed IIR 
VFD filters are summarized in Tables 3-4. The keywords adopted in Tables 3-4 are defined 
as follows: The “Sequential design” refers to the minimization problem defined by (29) 
subject to (a) stability inequality constraints (35) for VdIIR VFD filter design; and (b) stability 
inequality constraints (34) for FdIIR VFD filter design. The “Gradient-based design with 
(35)” refers to the minimization problem defined by (37) subject to stability inequality 
constraints (35) for an initial VdIIR VFD filter design, and followed by a local search. The 
“Gradient-based design with (34)” refers to the minimization problem defined by (37) 
subject to stability inequality constraints (34) for an initial FdIIR VFD filter design, and 
followed by a local search. The “Gradient-based design with (43)” refers to the minimization 
problem defined by (43) for an initial VdIIR or FdIIR VFD filter design, and followed by a 
local search. Within each of the four sets of designs, the relative erms (in frequency responses) 
performances are ranked from top to bottom as shown in Tables 3-4. The top performer of 
each IIR VFD design method in Tables 3-4 is listed in Table 5.  
 
As shown in Table 5, the erms performances among the VdIIR VFD filters can be summarized 
as follows: The top performers for 0.95    0.9625 are the gradient-based designs with (35). 
The top performers for 0.9    0.925 are the gradient-based designs with (43). The bottom 
performer is the two-stage design of (ZK). The performance of the sequential designs (29) 
ranks at the middle between the designs of (ZK) and the gradient-based designs with (35) 
and with (43). As also shown in Table 5, the erms performances among the FdIIR VFD filters 
can be summarized as follows: The top performers for 0.925    0.9625 are the gradient-
based designs with (43) but has an average performance for  = 0.9. The top performer for  
= 0.9 is the gradient-based design with (34) which has close but lower performances than 
those of the gradient-based designs with (43) for 0.925    0.95. The bottom performer for 
0.925    0.9625 is (TCK) but it ranks second among all the FdIIR VFD designs for  = 0.9. 
Between (KJ) and the sequential design (29), the former ranks higher than those of the 
sequential designs (29) for 0.95     0.9625 but vice versa for 0.9    0.925. Comparing 
(KJ) and (TCK), the former yields better performances for 0.925    0.9625 but vice versa 
for  = 0.9. 
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FdIIR VFD filters at  = 0.9,  = 0). At each iteration, the SOCP problems in (29), (37) and 
(43) are solved using SeDuMi (Sturm, 1999) under MATLAB environment. 

 
6. Performance analysis 

6.1 Error measurements and stability check 

To evaluate the performances of each designed VFD filter, the maximum absolute error emax, 
and the normalized root-mean-squared (RMS) error erms of its (a) frequency responses, (b) 
magnitude responses, and (c) fractional group delay responses are adopted and they are 
defined, respectively, by 

        max ( , ) ,  [0, ], [ 0.5,0.5]maxe e t t       (46) 
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where 
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(53) 

 

In (53), τ(ω,t) denotes the actual fractional group delay of a designed VFD filter. Since the 
design problem is formulated in the WLS sense (see (19)), so the erms of the frequency 
responses is the most appropriate criterion for comparisons among different design 
methods. In case two designs have the same erms, other error measurements shall be 
compared. For each of the designed VdIIR VFD filters and AP VFD filters, a uniform grid 
consisting of 1001 discrete fractional delay values t were used to ensure all these 1001 VFD 
filters are stable. By checking individual maximum pole radius to be within the unity circle, 
each of the designed VFD filters has been verified to be stable.  

 
6.2 IIR VFD filter performances 

Based on the design specifications of Table 1, the error performances of the designed IIR 
VFD filters are summarized in Tables 3-4. The keywords adopted in Tables 3-4 are defined 
as follows: The “Sequential design” refers to the minimization problem defined by (29) 
subject to (a) stability inequality constraints (35) for VdIIR VFD filter design; and (b) stability 
inequality constraints (34) for FdIIR VFD filter design. The “Gradient-based design with 
(35)” refers to the minimization problem defined by (37) subject to stability inequality 
constraints (35) for an initial VdIIR VFD filter design, and followed by a local search. The 
“Gradient-based design with (34)” refers to the minimization problem defined by (37) 
subject to stability inequality constraints (34) for an initial FdIIR VFD filter design, and 
followed by a local search. The “Gradient-based design with (43)” refers to the minimization 
problem defined by (43) for an initial VdIIR or FdIIR VFD filter design, and followed by a 
local search. Within each of the four sets of designs, the relative erms (in frequency responses) 
performances are ranked from top to bottom as shown in Tables 3-4. The top performer of 
each IIR VFD design method in Tables 3-4 is listed in Table 5.  
 
As shown in Table 5, the erms performances among the VdIIR VFD filters can be summarized 
as follows: The top performers for 0.95    0.9625 are the gradient-based designs with (35). 
The top performers for 0.9    0.925 are the gradient-based designs with (43). The bottom 
performer is the two-stage design of (ZK). The performance of the sequential designs (29) 
ranks at the middle between the designs of (ZK) and the gradient-based designs with (35) 
and with (43). As also shown in Table 5, the erms performances among the FdIIR VFD filters 
can be summarized as follows: The top performers for 0.925    0.9625 are the gradient-
based designs with (43) but has an average performance for  = 0.9. The top performer for  
= 0.9 is the gradient-based design with (34) which has close but lower performances than 
those of the gradient-based designs with (43) for 0.925    0.95. The bottom performer for 
0.925    0.9625 is (TCK) but it ranks second among all the FdIIR VFD designs for  = 0.9. 
Between (KJ) and the sequential design (29), the former ranks higher than those of the 
sequential designs (29) for 0.95     0.9625 but vice versa for 0.9    0.925. Comparing 
(KJ) and (TCK), the former yields better performances for 0.925    0.9625 but vice versa 
for  = 0.9. 
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α N D A R Freq. Responses Mag. Responses FGD Responses 
emax (dB) erms emax,1(dB) erms,1 emax,2 erms,2 

1 49 

25 

(29) 9 -35.490 1.892e-3 -37.360 1.289e-3 1.763 2.754e-1 
(35) 3 -50.347 3.683e-4 -50.402 2.923e-4 3.970e-1 6.042e-2 
(43) 4 -46.317 4.790e-4 -46.373 3.607e-4 5.621e-1 7.708e-2 
(ZK) 12 -11.622 2.766e-2 -12.295 2.402e-2 1.972 4.208e-1 

28 

(29) 8 -40.026 1.403e-3 -40.664 1.036e-3 1.160 1.823e-1 
(35) 2 -50.808 3.444e-4 -51.710 2.318e-4 4.850e-1 7.108e-2 
(43) 5 -45.817 4.981e-4 -48.255 3.327e-4 6.545e-1 9.443e-2 
(ZK) 11 -12.042 2.623e-2 -13.067 2.268e-2 1.892 4.291e-1 

31 

(29) 7 -42.041 8.851e-4 -42.698 6.840e-4 9.504e-1 1.431e-1 
(35) 1 -52.436 2.890e-4 -53.731 1.833e-4 4.442e-1 6.963e-2 
(43) 6 -45.492 5.203e-4 -46.819 3.439e-4 6.152e-1 1.034e-1 
(ZK) 10 -12.674 2.460e-2 -13.590 2.110e-2 1.797 4.203e-1 

2 46 

23 

(29) 9 -43.309 8.175e-4 -46.118 5.256e-4 6.791e-1 1.095e-1 
(35) 5 -57.964 1.563e-4 -57.970 1.230e-4 1.561e-1 2.346e-2 
(43) 6 -55.398 2.194e-4 -56.439 1.629e-4 2.370e-1 3.347e-2 
(ZK) 10 -17.857 1.511e-2 -18.471 1.328e-2 1.097 2.441e-1 

26 

(29) 8 -48.237 4.151e-4 -50.465 2.946e-4 3.830e-1 6.093e-2 
(35) 3 -59.298 1.354e-4 -60.759 9.100e-5 1.680e-1 2.487e-2 
(43) 4 -59.500 1.442e-4 -59.567 1.025e-4 1.855e-1 2.446e-2 
(ZK) 11 -17.735 1.531e-2 -18.573 1.340e-2 1.021 2.346e-1 

29 

(29) 7 -48.984 3.667e-4 -49.148 2.845e-4 3.047e-1 4.843e-2 
(35) 1 -60.500 1.171e-4 -63.434 7.782e-5 1.400e-1 2.453e-2 
(43) 2 -59.982 1.310e-4 -60.924 9.276e-5 1.434e-1 2.400e-2 
(ZK) 12 -11.036 2.871e-2 -12.351 2.526e-2 1.702 3.513e-1 

3 41 

21 

(29) 9 -57.865 1.108e-4 -61.693 6.780e-5 1.306e-1 1.993e-2 
(35) 5 -62.965 5.007e-5 -63.189 3.882e-5 5.270e-2 7.486e-3 
(43) 6 -64.763 6.303e-5 -67.058 4.233e-5 7.008e-2 1.016e-2 
(ZK) 10 -18.100 1.752e-2 -18.330 1.493e-2 4.667e-1 1.575e-1 

24 

(29) 7 -60.523 8.940e-5 -60.973 6.550e-5 9.716e-2 1.449e-2 
(35) 4 -66.111 4.390e-5 -67.968 3.004e-5 5.477e-2 8.191e-3 
(43) 3 -69.381 3.348e-5 -70.084 2.327e-5 4.344e-2 6.336e-3 
(ZK) 11 -15.405 1.998e-2 -15.883 1.767e-2 6.691e-1 1.745e-1 

27 

(29) 8 -59.811 9.295e-5 -59.859 7.225e-5 7.450e-2 1.322e-2 
(35) 2 -67.930 3.255e-5 -72.267 2.048e-5 4.415e-2 7.135e-3 
(43) 1 -75.807 1.269e-5 -78.312 8.311e-6 2.229e-2 2.984e-3 
(ZK) 12 -13.440 2.520e-2 -14.190 2.242e-2 1.020 2.197e-1 

 
 

4 36 

18 

(29) 7 -70.872 3.336e-5 -74.955 2.250e-5 2.631e-2 4.264e-3 
(35) 9 -71.177 3.592e-5 -71.466 2.760e-5 2.270e-2 3.510e-3 
(43) 4 -71.255 2.661e-5 -73.122 1.942e-5 2.182e-2 3.217e-3 
(ZK) 11 -20.667 1.381e-2 -20.070 1.113e-2 2.332e-1 1.109e-1 

21 

(29) 6 -71.817 3.311e-5 -73.389 2.411e-5 2.564e-2 3.895e-3 
(35) 5 -72.620 2.730e-5 -73.472 1.881e-5 2.110e-2 3.541e-3 
(43) 2 -79.979 7.880e-6 -83.184 5.360e-6 8.086e-3 1.170e-3 
(ZK) 10 -21.880 1.139e-2 -22.079 9.317e-3 2.680e-1 1.033e-1 

24 

(29) 8 -71.882 3.488e-5 -72.448 2.545e-5 1.982e-2 3.541e-3 
(35) 3 -75.763 2.294e-5 -77.805 1.494e-5 2.183e-2 3.434e-3 
(43) 1 -83.278 6.257e-6 -85.250 4.068e-6 8.721e-3 1.314e-3 
(ZK) 12 -14.311 2.847e-2 -14.477 2.483e-2 5.477e-1 1.958e-1 

Table 3. Performances of VdIIR VFD filters (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9; A: 
Design method; (29): Sequential design; (35): Gradient-based design with (35); (43): 
Gradient-based design with (43); (ZK): (Zhao & Kwan, 2007); R: Rank; FGD: Fractional 
group delay) 
 

α N D A R 
Freq. Responses Mag. Responses FGD Responses 
emax erms emax,1(dB) erms,1 emax,2 erms,2 

1 54 

27 

(29) 12 -38.000 1.426e-3 -40.368 9.325e-4 1.556 2.398e-1 
(34) 6 -51.464 2.796e-4 -52.628 2.229e-4 3.141e-1 4.812e-2 
(43) 5 -49.821 2.791e-4 -49.826 2.345e-4 2.523e-1 4.390e-2 
(KJ) 9 -39.632 5.615e-4 -39.696 4.623e-4 8.980e-1 1.365e-1 

(TCK) 15 -30.303 2.429e-3 -31.218 1.974e-3 3.359 5.846e-1 

30 

(29) 11 -42.034 9.887e-4 -43.963 7.094e-4 1.014 1.559e-1 
(34) 4 -50.852 2.683e-4 -53.605 1.810e-4 3.932e-1 6.088e-2 
(43) 3 -49.940 2.663e-4 -51.336 1.906e-4 3.675e-1 5.526e-2 
(KJ) 7 -40.645 5.044e-4 -41.407 3.952e-4 1.010 1.446e-1 

(TCK) 14 -31.333 2.206e-3 -34.075 1.415e-3 3.364 6.026e-1 

33 

(29) 10 -43.634 6.475e-4 -45.398 4.989e-4 8.047e-1 1.196e-1 
(34) 2 -50.271 2.647e-4 -54.681 1.649e-4 4.254e-1 6.933e-2 
(43) 1 -58.117 1.360e-4 -59.459 1.055e-4 1.553e-1 2.391e-2 
(KJ) 8 -40.973 5.101e-4 -42.615 3.681e-4 1.143 1.668e-1 

(TCK) 13 -33.233 1.793e-3 -38.764 8.176e-4 2.853 5.160e-1 

2 51 26 

(29) 12 -46.106 4.757e-4 -49.348 3.021e-4 4.745e-1 7.514e-2 
(34) 9 -56.847 1.423e-4 -59.984 1.015e-4 1.334e-1 2.122e-2 
(43) 3 -60.282 1.172e-4 -62.605 9.084e-5 8.234e-2 1.344e-2 
(KJ) 5 -55.680 1.241e-4 -58.979 8.890e-5 2.465e-1 3.491e-2 

(TCK) 15 -38.816 8.603e-4 -38.917 7.661e-4 1.178 1.856e-1 



Integrated Design of IIR Variable Fractional Delay  
Digital Filters with Variable and Fixed Denominators 193

α N D A R Freq. Responses Mag. Responses FGD Responses 
emax (dB) erms emax,1(dB) erms,1 emax,2 erms,2 

1 49 

25 

(29) 9 -35.490 1.892e-3 -37.360 1.289e-3 1.763 2.754e-1 
(35) 3 -50.347 3.683e-4 -50.402 2.923e-4 3.970e-1 6.042e-2 
(43) 4 -46.317 4.790e-4 -46.373 3.607e-4 5.621e-1 7.708e-2 
(ZK) 12 -11.622 2.766e-2 -12.295 2.402e-2 1.972 4.208e-1 

28 

(29) 8 -40.026 1.403e-3 -40.664 1.036e-3 1.160 1.823e-1 
(35) 2 -50.808 3.444e-4 -51.710 2.318e-4 4.850e-1 7.108e-2 
(43) 5 -45.817 4.981e-4 -48.255 3.327e-4 6.545e-1 9.443e-2 
(ZK) 11 -12.042 2.623e-2 -13.067 2.268e-2 1.892 4.291e-1 

31 

(29) 7 -42.041 8.851e-4 -42.698 6.840e-4 9.504e-1 1.431e-1 
(35) 1 -52.436 2.890e-4 -53.731 1.833e-4 4.442e-1 6.963e-2 
(43) 6 -45.492 5.203e-4 -46.819 3.439e-4 6.152e-1 1.034e-1 
(ZK) 10 -12.674 2.460e-2 -13.590 2.110e-2 1.797 4.203e-1 

2 46 

23 

(29) 9 -43.309 8.175e-4 -46.118 5.256e-4 6.791e-1 1.095e-1 
(35) 5 -57.964 1.563e-4 -57.970 1.230e-4 1.561e-1 2.346e-2 
(43) 6 -55.398 2.194e-4 -56.439 1.629e-4 2.370e-1 3.347e-2 
(ZK) 10 -17.857 1.511e-2 -18.471 1.328e-2 1.097 2.441e-1 

26 

(29) 8 -48.237 4.151e-4 -50.465 2.946e-4 3.830e-1 6.093e-2 
(35) 3 -59.298 1.354e-4 -60.759 9.100e-5 1.680e-1 2.487e-2 
(43) 4 -59.500 1.442e-4 -59.567 1.025e-4 1.855e-1 2.446e-2 
(ZK) 11 -17.735 1.531e-2 -18.573 1.340e-2 1.021 2.346e-1 

29 

(29) 7 -48.984 3.667e-4 -49.148 2.845e-4 3.047e-1 4.843e-2 
(35) 1 -60.500 1.171e-4 -63.434 7.782e-5 1.400e-1 2.453e-2 
(43) 2 -59.982 1.310e-4 -60.924 9.276e-5 1.434e-1 2.400e-2 
(ZK) 12 -11.036 2.871e-2 -12.351 2.526e-2 1.702 3.513e-1 

3 41 

21 

(29) 9 -57.865 1.108e-4 -61.693 6.780e-5 1.306e-1 1.993e-2 
(35) 5 -62.965 5.007e-5 -63.189 3.882e-5 5.270e-2 7.486e-3 
(43) 6 -64.763 6.303e-5 -67.058 4.233e-5 7.008e-2 1.016e-2 
(ZK) 10 -18.100 1.752e-2 -18.330 1.493e-2 4.667e-1 1.575e-1 

24 

(29) 7 -60.523 8.940e-5 -60.973 6.550e-5 9.716e-2 1.449e-2 
(35) 4 -66.111 4.390e-5 -67.968 3.004e-5 5.477e-2 8.191e-3 
(43) 3 -69.381 3.348e-5 -70.084 2.327e-5 4.344e-2 6.336e-3 
(ZK) 11 -15.405 1.998e-2 -15.883 1.767e-2 6.691e-1 1.745e-1 

27 

(29) 8 -59.811 9.295e-5 -59.859 7.225e-5 7.450e-2 1.322e-2 
(35) 2 -67.930 3.255e-5 -72.267 2.048e-5 4.415e-2 7.135e-3 
(43) 1 -75.807 1.269e-5 -78.312 8.311e-6 2.229e-2 2.984e-3 
(ZK) 12 -13.440 2.520e-2 -14.190 2.242e-2 1.020 2.197e-1 

 
 

4 36 

18 

(29) 7 -70.872 3.336e-5 -74.955 2.250e-5 2.631e-2 4.264e-3 
(35) 9 -71.177 3.592e-5 -71.466 2.760e-5 2.270e-2 3.510e-3 
(43) 4 -71.255 2.661e-5 -73.122 1.942e-5 2.182e-2 3.217e-3 
(ZK) 11 -20.667 1.381e-2 -20.070 1.113e-2 2.332e-1 1.109e-1 

21 

(29) 6 -71.817 3.311e-5 -73.389 2.411e-5 2.564e-2 3.895e-3 
(35) 5 -72.620 2.730e-5 -73.472 1.881e-5 2.110e-2 3.541e-3 
(43) 2 -79.979 7.880e-6 -83.184 5.360e-6 8.086e-3 1.170e-3 
(ZK) 10 -21.880 1.139e-2 -22.079 9.317e-3 2.680e-1 1.033e-1 

24 

(29) 8 -71.882 3.488e-5 -72.448 2.545e-5 1.982e-2 3.541e-3 
(35) 3 -75.763 2.294e-5 -77.805 1.494e-5 2.183e-2 3.434e-3 
(43) 1 -83.278 6.257e-6 -85.250 4.068e-6 8.721e-3 1.314e-3 
(ZK) 12 -14.311 2.847e-2 -14.477 2.483e-2 5.477e-1 1.958e-1 

Table 3. Performances of VdIIR VFD filters (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9; A: 
Design method; (29): Sequential design; (35): Gradient-based design with (35); (43): 
Gradient-based design with (43); (ZK): (Zhao & Kwan, 2007); R: Rank; FGD: Fractional 
group delay) 
 

α N D A R 
Freq. Responses Mag. Responses FGD Responses 
emax erms emax,1(dB) erms,1 emax,2 erms,2 

1 54 

27 

(29) 12 -38.000 1.426e-3 -40.368 9.325e-4 1.556 2.398e-1 
(34) 6 -51.464 2.796e-4 -52.628 2.229e-4 3.141e-1 4.812e-2 
(43) 5 -49.821 2.791e-4 -49.826 2.345e-4 2.523e-1 4.390e-2 
(KJ) 9 -39.632 5.615e-4 -39.696 4.623e-4 8.980e-1 1.365e-1 

(TCK) 15 -30.303 2.429e-3 -31.218 1.974e-3 3.359 5.846e-1 

30 

(29) 11 -42.034 9.887e-4 -43.963 7.094e-4 1.014 1.559e-1 
(34) 4 -50.852 2.683e-4 -53.605 1.810e-4 3.932e-1 6.088e-2 
(43) 3 -49.940 2.663e-4 -51.336 1.906e-4 3.675e-1 5.526e-2 
(KJ) 7 -40.645 5.044e-4 -41.407 3.952e-4 1.010 1.446e-1 

(TCK) 14 -31.333 2.206e-3 -34.075 1.415e-3 3.364 6.026e-1 

33 

(29) 10 -43.634 6.475e-4 -45.398 4.989e-4 8.047e-1 1.196e-1 
(34) 2 -50.271 2.647e-4 -54.681 1.649e-4 4.254e-1 6.933e-2 
(43) 1 -58.117 1.360e-4 -59.459 1.055e-4 1.553e-1 2.391e-2 
(KJ) 8 -40.973 5.101e-4 -42.615 3.681e-4 1.143 1.668e-1 

(TCK) 13 -33.233 1.793e-3 -38.764 8.176e-4 2.853 5.160e-1 

2 51 26 

(29) 12 -46.106 4.757e-4 -49.348 3.021e-4 4.745e-1 7.514e-2 
(34) 9 -56.847 1.423e-4 -59.984 1.015e-4 1.334e-1 2.122e-2 
(43) 3 -60.282 1.172e-4 -62.605 9.084e-5 8.234e-2 1.344e-2 
(KJ) 5 -55.680 1.241e-4 -58.979 8.890e-5 2.465e-1 3.491e-2 

(TCK) 15 -38.816 8.603e-4 -38.917 7.661e-4 1.178 1.856e-1 
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29 

(29) 11 -49.943 2.895e-4 -52.464 2.166e-4 2.821e-1 4.396e-2 
(34) 8 -55.870 1.386e-4 -63.233 8.848e-5 1.524e-1 2.632e-2 
(43) 2 -60.166 1.051e-4 -64.946 7.397e-5 8.715e-2 1.359e-2 
(KJ) 4 -56.758 1.193e-4 -59.001 8.726e-5 1.691e-1 2.528e-2 

(TCK) 14 -40.109 8.059e-4 -42.311 5.295e-4 1.314 2.294e-1 

32 

(29) 10 -51.166 2.425e-4 -52.046 1.934e-4 2.142e-1 3.369e-2 
(34) 7 -55.703 1.382e-4 -61.363 9.540e-5 1.556e-1 2.623e-2 
(43) 1 -58.723 1.018e-4 -65.813 7.060e-5 1.013e-1 1.683e-2 
(KJ) 6 -55.965 1.287e-4 -55.998 9.835e-5 1.528e-1 2.498e-2 

(TCK) 13 -41.867 6.935e-4 -48.144 3.326e-4 1.023 1.822e-1 

3 46 

23 

(29) 12 -56.063 1.152e-4 -60.966 7.670e-5 1.237e-1 1.812e-2 
(34) 3 -59.700 7.518e-5 -67.140 5.471e-5 4.434e-2 6.868e-3 
(43) 4 -61.491 7.567e-5 -66.350 5.607e-5 3.709e-2 5.591e-3 
(KJ) 10 -58.608 9.039e-5 -62.759 6.328e-5 8.504e-2 1.145e-2 

(TCK) 13 -55.650 1.372e-4 -56.367 1.175e-4 1.242e-1 1.750e-2 

26 

(29) 7 -60.462 8.640e-5 -64.213 6.376e-5 6.447e-2 9.586e-3 
(34) 6 -59.137 8.352e-5 -66.130 5.871e-5 6.708e-2 9.784e-3 
(43) 2 -61.693 7.237e-5 -68.770 5.183e-5 3.782e-2 5.498e-3 
(KJ) 9 -61.008 8.814e-5 -63.846 6.359e-5 5.162e-2 7.425e-3 

(TCK) 14 -54.098 1.536e-4 -55.608 1.325e-4 2.001e-1 2.945e-2 

29 

(29) 5 -61.122 8.273e-5 -64.300 6.255e-5 5.129e-2 7.660e-3 
(34) 11 -58.753 9.176e-5 -65.279 6.558e-5 7.955e-2 1.131e-2 
(43) 1 -60.702 7.065e-5 -69.047 5.209e-5 3.796e-2 5.501e-3 
(KJ) 8 -62.337 8.694e-5 -64.720 6.295e-5 4.210e-2 6.087e-3 

(TCK) 15 -54.170 1.639e-4 -57.739 8.782e-5 2.696e-1 4.845e-2 

4 41 

21 

(29) 8 -63.290 6.478e-5 -68.632 4.749e-5 2.587e-2 3.957e-3 
(34) 1 -62.541 5.875e-5 -71.768 4.111e-5 2.003e-2 3.037e-3 
(43) 5 -64.151 6.078e-5 -71.767 4.448e-5 1.876e-2 2.673e-3 
(KJ) 11 -66.316 7.136e-5 -70.722 5.197e-5 7.839e-3 1.202e-3 

(TCK) 2 -64.839 5.948e-5 -71.691 4.386e-5 2.400e-2 3.768e-3 

24 

(29) 6 -63.812 6.103e-5 -69.829 4.557e-5 1.439e-2 2.480e-3 
(34) 3 -61.956 5.978e-5 -70.458 4.250e-5 2.073e-2 3.177e-3 
(43) 4 -63.959 6.049e-5 -69.984 4.491e-5 1.615e-2 2.565e-3 
(KJ) 12 -65.803 7.137e-5 -70.716 5.194e-5 1.140e-2 1.686e-3 

(TCK) 14 -63.694 8.469e-5 -64.780 5.867e-5 6.538e-2 1.150e-2 

27 
(29) 7 -64.154 6.237e-5 -69.549 4.676e-5 1.283e-2 2.222e-3 
(34) 9 -62.223 6.748e-5 -66.374 4.933e-5 1.815e-2 3.434e-3 

(43) 10 -62.973 7.050e-5 -65.414 5.395e-5 1.670e-2 3.412e-3 
(KJ) 13 -66.208 7.147e-5 -70.498 5.203e-5 1.101e-2 1.632e-3 

(TCK) 15 -58.427 1.680e-4 -58.631 1.203e-4 7.196e-2 1.499e-2 
Table 4. Performances of FdIIR VFD filters (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9; A: 
Design method; (29): Sequential design; (34): Gradient-based design with (34); (43): 
Gradient-based design with (43); (KJ): (Kwan & Jiang, 2009a); (TCK): (Tsui et al., 2007); R: 
Rank; FGD: Fractional group delay) 

 

  
VdIIR FdIIR 

(29) (35) (43) (ZK) (29) (34) (43) (KJ) (TCK) 

1 
erms 8.851e-4 2.890e-4 4.790e-4 2.460e-2 6.475e-4 2.647e-4 1.360e-4 5.044e-4 1.793e-3 
R 3 1 2 4 4 2 1 3 5 

2 
erms 3.667e-4 1.171e-4 1.310e-4 1.511e-2 2.425e-4 1.382e-4 1.018e-4 1.193e-4 6.935e-4 
R 3 1 2 4 4 3 1 2 5 

3 
erms 8.940e-5 3.255e-5 1.269e-5 1.752e-2 8.273e-5 7.518e-5 7.065e-5 8.694e-5 1.372e-4 
R 3 2 1 4 3 2 1 4 5 

4 
erms 3.311e-5 2.294e-5 6.257e-6 1.139e-2 6.103e-5 5.875e-5 6.049e-5 7.136e-5 5.948e-5 
R 3 2 1 4 4 1 3 5 2 

Table 5. Top-performed (erms) VFD filters from Tables 3-4 (Keys: 1= 0.9625, 2= 0.95, 3= 
0.925, 4= 0.9; (ZK): (Zhao & Kwan, 2007); (KJ): (Kwan & Jiang, 2009a); (TCK): (Tsui et al., 
2007); R: Rank) 

 
6.3 Allpass and FIR VFD filter performances 

The error performances of the AP VFD filters designed by (KJ) and (LCR) and the FIR VFD 
filters designed by (KJ) and (LD) are summarized in Table 6. In general, the two AP VFD 
filters achieve erms improvements over the two FIR VFD filters (except for (LD) at  = 0.9625). 
The top erms performances of the AP VFD filters are (KJ) for 0.925    0.9625 and (LCR) for 
 = 0.9.  

 
6.4 Optimal gradient-based designs with (43) 
It can be observed in Tables 3-4 that the error performances of VdIIR and FdIIR VFD filters 
at any specified cutoff frequency is a function of the mean group delay value D. To 
investigate this property further, consider the case of the gradient-based design with (43) in 
Table 5 in which it ranks top among VdIIR VFD filters for 0.9    0.925 and ranks top 
among FdIIR VFD filters for 0.925     0.9625. For each of the four cutoff frequencies, the 
error performances of the gradient-based designs with (43) for VdIIR and FdIIR VFD filters 
versus mean group delay D (at a step size of 3) are, respectively, summarized in Tables 7-8 
and their corresponding erms values versus D are plotted in Figs. 1-8. From Tables 7-8, their  
mean group delay values D that yield minimum erms values are summarized in Table 9. For 
comparisons, the erms performances of the AP and FIR VFD filters from Table 6 are also 
listed under Table 9. The magnitude responses and group delay responses of the widest 
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29 

(29) 11 -49.943 2.895e-4 -52.464 2.166e-4 2.821e-1 4.396e-2 
(34) 8 -55.870 1.386e-4 -63.233 8.848e-5 1.524e-1 2.632e-2 
(43) 2 -60.166 1.051e-4 -64.946 7.397e-5 8.715e-2 1.359e-2 
(KJ) 4 -56.758 1.193e-4 -59.001 8.726e-5 1.691e-1 2.528e-2 

(TCK) 14 -40.109 8.059e-4 -42.311 5.295e-4 1.314 2.294e-1 

32 

(29) 10 -51.166 2.425e-4 -52.046 1.934e-4 2.142e-1 3.369e-2 
(34) 7 -55.703 1.382e-4 -61.363 9.540e-5 1.556e-1 2.623e-2 
(43) 1 -58.723 1.018e-4 -65.813 7.060e-5 1.013e-1 1.683e-2 
(KJ) 6 -55.965 1.287e-4 -55.998 9.835e-5 1.528e-1 2.498e-2 

(TCK) 13 -41.867 6.935e-4 -48.144 3.326e-4 1.023 1.822e-1 

3 46 

23 

(29) 12 -56.063 1.152e-4 -60.966 7.670e-5 1.237e-1 1.812e-2 
(34) 3 -59.700 7.518e-5 -67.140 5.471e-5 4.434e-2 6.868e-3 
(43) 4 -61.491 7.567e-5 -66.350 5.607e-5 3.709e-2 5.591e-3 
(KJ) 10 -58.608 9.039e-5 -62.759 6.328e-5 8.504e-2 1.145e-2 

(TCK) 13 -55.650 1.372e-4 -56.367 1.175e-4 1.242e-1 1.750e-2 

26 

(29) 7 -60.462 8.640e-5 -64.213 6.376e-5 6.447e-2 9.586e-3 
(34) 6 -59.137 8.352e-5 -66.130 5.871e-5 6.708e-2 9.784e-3 
(43) 2 -61.693 7.237e-5 -68.770 5.183e-5 3.782e-2 5.498e-3 
(KJ) 9 -61.008 8.814e-5 -63.846 6.359e-5 5.162e-2 7.425e-3 

(TCK) 14 -54.098 1.536e-4 -55.608 1.325e-4 2.001e-1 2.945e-2 

29 

(29) 5 -61.122 8.273e-5 -64.300 6.255e-5 5.129e-2 7.660e-3 
(34) 11 -58.753 9.176e-5 -65.279 6.558e-5 7.955e-2 1.131e-2 
(43) 1 -60.702 7.065e-5 -69.047 5.209e-5 3.796e-2 5.501e-3 
(KJ) 8 -62.337 8.694e-5 -64.720 6.295e-5 4.210e-2 6.087e-3 

(TCK) 15 -54.170 1.639e-4 -57.739 8.782e-5 2.696e-1 4.845e-2 

4 41 

21 

(29) 8 -63.290 6.478e-5 -68.632 4.749e-5 2.587e-2 3.957e-3 
(34) 1 -62.541 5.875e-5 -71.768 4.111e-5 2.003e-2 3.037e-3 
(43) 5 -64.151 6.078e-5 -71.767 4.448e-5 1.876e-2 2.673e-3 
(KJ) 11 -66.316 7.136e-5 -70.722 5.197e-5 7.839e-3 1.202e-3 

(TCK) 2 -64.839 5.948e-5 -71.691 4.386e-5 2.400e-2 3.768e-3 

24 

(29) 6 -63.812 6.103e-5 -69.829 4.557e-5 1.439e-2 2.480e-3 
(34) 3 -61.956 5.978e-5 -70.458 4.250e-5 2.073e-2 3.177e-3 
(43) 4 -63.959 6.049e-5 -69.984 4.491e-5 1.615e-2 2.565e-3 
(KJ) 12 -65.803 7.137e-5 -70.716 5.194e-5 1.140e-2 1.686e-3 

(TCK) 14 -63.694 8.469e-5 -64.780 5.867e-5 6.538e-2 1.150e-2 

27 
(29) 7 -64.154 6.237e-5 -69.549 4.676e-5 1.283e-2 2.222e-3 
(34) 9 -62.223 6.748e-5 -66.374 4.933e-5 1.815e-2 3.434e-3 

(43) 10 -62.973 7.050e-5 -65.414 5.395e-5 1.670e-2 3.412e-3 
(KJ) 13 -66.208 7.147e-5 -70.498 5.203e-5 1.101e-2 1.632e-3 

(TCK) 15 -58.427 1.680e-4 -58.631 1.203e-4 7.196e-2 1.499e-2 
Table 4. Performances of FdIIR VFD filters (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9; A: 
Design method; (29): Sequential design; (34): Gradient-based design with (34); (43): 
Gradient-based design with (43); (KJ): (Kwan & Jiang, 2009a); (TCK): (Tsui et al., 2007); R: 
Rank; FGD: Fractional group delay) 

 

  
VdIIR FdIIR 

(29) (35) (43) (ZK) (29) (34) (43) (KJ) (TCK) 

1 
erms 8.851e-4 2.890e-4 4.790e-4 2.460e-2 6.475e-4 2.647e-4 1.360e-4 5.044e-4 1.793e-3 
R 3 1 2 4 4 2 1 3 5 

2 
erms 3.667e-4 1.171e-4 1.310e-4 1.511e-2 2.425e-4 1.382e-4 1.018e-4 1.193e-4 6.935e-4 
R 3 1 2 4 4 3 1 2 5 

3 
erms 8.940e-5 3.255e-5 1.269e-5 1.752e-2 8.273e-5 7.518e-5 7.065e-5 8.694e-5 1.372e-4 
R 3 2 1 4 3 2 1 4 5 

4 
erms 3.311e-5 2.294e-5 6.257e-6 1.139e-2 6.103e-5 5.875e-5 6.049e-5 7.136e-5 5.948e-5 
R 3 2 1 4 4 1 3 5 2 

Table 5. Top-performed (erms) VFD filters from Tables 3-4 (Keys: 1= 0.9625, 2= 0.95, 3= 
0.925, 4= 0.9; (ZK): (Zhao & Kwan, 2007); (KJ): (Kwan & Jiang, 2009a); (TCK): (Tsui et al., 
2007); R: Rank) 

 
6.3 Allpass and FIR VFD filter performances 

The error performances of the AP VFD filters designed by (KJ) and (LCR) and the FIR VFD 
filters designed by (KJ) and (LD) are summarized in Table 6. In general, the two AP VFD 
filters achieve erms improvements over the two FIR VFD filters (except for (LD) at  = 0.9625). 
The top erms performances of the AP VFD filters are (KJ) for 0.925    0.9625 and (LCR) for 
 = 0.9.  

 
6.4 Optimal gradient-based designs with (43) 
It can be observed in Tables 3-4 that the error performances of VdIIR and FdIIR VFD filters 
at any specified cutoff frequency is a function of the mean group delay value D. To 
investigate this property further, consider the case of the gradient-based design with (43) in 
Table 5 in which it ranks top among VdIIR VFD filters for 0.9    0.925 and ranks top 
among FdIIR VFD filters for 0.925     0.9625. For each of the four cutoff frequencies, the 
error performances of the gradient-based designs with (43) for VdIIR and FdIIR VFD filters 
versus mean group delay D (at a step size of 3) are, respectively, summarized in Tables 7-8 
and their corresponding erms values versus D are plotted in Figs. 1-8. From Tables 7-8, their  
mean group delay values D that yield minimum erms values are summarized in Table 9. For 
comparisons, the erms performances of the AP and FIR VFD filters from Table 6 are also 
listed under Table 9. The magnitude responses and group delay responses of the widest 
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band designs at α = 0.9625 obtained by the VdIIR and FdIIR VFD filters shown in Table 9 are 
plotted in Figs. 9-12. 
 

α OD A/F 
Freq. Responses Mag. Responses FGD Responses 

emax (dB) erms emax,1(dB) erms,1 emax,2 erms,2 

α1 

56, 
56 

A(KJ) -40.677 3.246e-4 N.A. N.A. 1.980 1.717e-1 
A(LCR) -24.604 9.309e-3 N.A. N.A. 5.920e-1 1.374e-1 

55, 
28 

F(KJ) 2.798 8.242e-1 -24.807 3.048e-3 2.117 1.761 
F(LD) -31.994 3.573e-3 -31.997 2.933e-3 1.548 3.248e-1 

α2 

53, 
53 

A(KJ) -61.643 5.626e-5 N.A. N.A. 4.437e-1 3.779e-2 
A(LCR) -55.710 2.258e-4 N.A. N.A. 8.224e-2 2.181e-2 

52, 
26 

F(KJ) -32.726 1.493e-3 -32.770 1.216e-3 8.027e-1 1.633e-1 
F(LD) -38.421 1.552e-3 -38.432 1.229e-3 6.470e-1 1.459e-1 

α3 

48, 
48 

A(KJ) -70.691 1.264e-5 N.A. N.A. 2.011e-2 1.745e-3 
A(LCR) -73.920 1.265e-5 N.A. N.A. 2.991e-3 9.069e-4 

47, 
24 

F(KJ) 2.474 7.957e-1 -42.609 3.731e-4 7.122e-1 1.732 
F(LD) -50.268 3.654e-4 -50.411 2.917e-4 1.802e-1 3.536e-2 

α4 

43, 
43 

A(KJ) -80.513 4.987e-6 N.A. N.A. 5.892e-3 5.193e-4 
A(LCR) -84.237 4.119e-6 N.A. N.A. 3.870e-4 1.044e-4 

42, 
21 

F(KJ) -53.561 1.310e-4 -53.810 1.027e-4 7.986e-2 1.609e-2 
F(LD) -59.247 1.354e-4 -59.572 1.015e-4 5.479e-2 1.223e-2 

Table 6. Performances of allpass and FIR VFD filters (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 
4= 0.9; OD: Filter order and mean group delay (MAP, DAP) or (LFIR, DFIR); A: Allpass design, 
F: FIR design; (KJ): (Kwan & Jiang, 2009a); (LCR): (Lee et al., 2008); (LD): (Lu & Deng, 1999); 
FGD: Fractional group delay) 
 
The relationship between numerator and denominator orders, and optimal mean group 
delay of a VdIIR or FdIIR VFD filter is a subject of interest. Table 10 summarizes such 
relationships among those VdIIR and FdIIR VDF filters listed in Table 9. It can be observed 
from Table 10 that as  changes from 0.9     0.9625, the ratio D/(N+M) changes from 0.64 
to 0.67 for VdIIR VFD filters, and changes from 0.57 to 0.55 for FdIIR VFD filters. Also, as 
seen from Figs. 1-8, for the higher wideband side with  = 0.9625 and 0.95, there is a mean 
group delay value that yields a minimum erms value; but for the lower wideband side with  
= 0.925 and 0.9, each of the mean group delay curves shows that erms becomes lower much 
earlier at smaller D before reaching its minimum erms value. In other words, the mean group 
delay requirement is lower for lower wideband cutoff frequencies. From Table 10, in 
general, the VdIIR VFD filters require slightly higher optimal mean group delay values D 
than those of the corresponding FdIIR VFD filters.  
 
 

 

α N D R 
Freq. Responses Mag. Responses FGD Responses 

emax (dB) erms emax,1(dB) erms,1 emax,2 erms,2 

α1 49 

25 6 -46.317 4.790e-4 -46.373 3.607e-4 5.621e-1 7.708e-2 
28 7 -45.817 4.981e-4 -48.255 3.327e-4 6.545e-1 9.443e-2 
31 8 -45.492 5.203e-4 -46.819 3.439e-4 6.152e-1 1.034e-1 
34 3 -55.689 1.709e-4 -56.650 1.203e-4 3.135e-1 4.301e-2 
37 1 -56.746 1.157e-4 -56.792 8.227e-5 2.371e-1 3.090e-2 
40 2 -54.753 1.333e-4 -55.272 8.621e-5 2.725e-1 3.913e-2 
43 4 -52.061 1.811e-4 -54.511 1.181e-4 3.634e-1 5.468e-2 
46 5 -48.664 2.877e-4 -48.979 2.016e-4 3.676e-1 6.420e-2 

α2 46 

23 7 -55.398 2.194e-4 -56.439 1.629e-4 2.370e-1 3.347e-2 
26 6 -59.500 1.442e-4 -59.567 1.025e-4 1.855e-1 2.446e-2 
29 5 -59.982 1.310e-4 -60.924 9.276e-5 1.434e-1 2.400e-2 
32 2 -63.424 6.157e-5 -66.513 4.168e-5 1.025e-1 1.451e-2 
35 1 -64.515 5.514e-5 -67.411 3.558e-5 1.019e-1 1.364e-2 
38 3 -62.722 6.798e-5 -63.918 4.290e-5 1.184e-1 1.767e-2 
41 4 -57.588 9.448e-5 -57.757 7.247e-5 1.200e-1 1.731e-2 
44 8 -48.195 2.999e-4 -52.186 2.194e-4 5.620e-1 5.862e-2 

α3 41 

18 8 -49.959 3.716e-4 -50.563 2.537e-4 2.966e-1 4.916e-2 
21 6 -64.763 6.303e-5 -67.058 4.233e-5 7.008e-2 1.016e-2 
24 5 -69.381 3.348e-5 -70.084 2.327e-5 4.344e-2 6.336e-3 
27 2 -75.807 1.269e-5 -78.312 8.311e-6 2.229e-2 2.984e-3 
30 1 -75.789 1.082e-5 -80.087 6.474e-6 2.048e-2 3.090e-3 
33 3 -71.425 1.823e-5 -71.675 1.433e-5 2.420e-2 3.420e-3 
36 4 -67.853 2.618e-5 -69.170 1.809e-5 3.759e-2 5.315e-3 
39 7 -59.463 7.159e-5 -61.018 5.770e-5 1.011e-1 1.101e-2 

α4 36 

12 8 -54.423 3.608e-4 -54.631 2.655e-4 2.113e-1 3.317e-2 
15 7 -62.453 1.158e-4 -64.365 8.504e-5 7.312e-2 1.147e-2 
18 6 -71.255 2.661e-5 -73.122 1.942e-5 2.182e-2 3.217e-3 
21 3 -79.979 7.880e-6 -83.184 5.360e-6 8.086e-3 1.170e-3 
24 2 -83.278 6.257e-6 -85.250 4.068e-6 8.721e-3 1.314e-3 
27 1 -81.501 5.606e-6 -82.356 4.315e-6 6.449e-3 9.108e-4 
30 4 -76.734 8.225e-6 -82.492 5.195e-6 1.332e-2 1.626e-3 
33 5 -68.507 2.048e-5 -73.101 1.519e-5 2.204e-2 3.328e-3 

Table 7. Performances of gradient-based design (43) of VdIIR VFD filters versus mean group 
delay (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9; R: Rank; FGD: Fractional group delay) 
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band designs at α = 0.9625 obtained by the VdIIR and FdIIR VFD filters shown in Table 9 are 
plotted in Figs. 9-12. 
 

α OD A/F 
Freq. Responses Mag. Responses FGD Responses 

emax (dB) erms emax,1(dB) erms,1 emax,2 erms,2 

α1 

56, 
56 

A(KJ) -40.677 3.246e-4 N.A. N.A. 1.980 1.717e-1 
A(LCR) -24.604 9.309e-3 N.A. N.A. 5.920e-1 1.374e-1 

55, 
28 

F(KJ) 2.798 8.242e-1 -24.807 3.048e-3 2.117 1.761 
F(LD) -31.994 3.573e-3 -31.997 2.933e-3 1.548 3.248e-1 

α2 

53, 
53 

A(KJ) -61.643 5.626e-5 N.A. N.A. 4.437e-1 3.779e-2 
A(LCR) -55.710 2.258e-4 N.A. N.A. 8.224e-2 2.181e-2 

52, 
26 

F(KJ) -32.726 1.493e-3 -32.770 1.216e-3 8.027e-1 1.633e-1 
F(LD) -38.421 1.552e-3 -38.432 1.229e-3 6.470e-1 1.459e-1 

α3 

48, 
48 

A(KJ) -70.691 1.264e-5 N.A. N.A. 2.011e-2 1.745e-3 
A(LCR) -73.920 1.265e-5 N.A. N.A. 2.991e-3 9.069e-4 

47, 
24 

F(KJ) 2.474 7.957e-1 -42.609 3.731e-4 7.122e-1 1.732 
F(LD) -50.268 3.654e-4 -50.411 2.917e-4 1.802e-1 3.536e-2 

α4 

43, 
43 

A(KJ) -80.513 4.987e-6 N.A. N.A. 5.892e-3 5.193e-4 
A(LCR) -84.237 4.119e-6 N.A. N.A. 3.870e-4 1.044e-4 

42, 
21 

F(KJ) -53.561 1.310e-4 -53.810 1.027e-4 7.986e-2 1.609e-2 
F(LD) -59.247 1.354e-4 -59.572 1.015e-4 5.479e-2 1.223e-2 

Table 6. Performances of allpass and FIR VFD filters (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 
4= 0.9; OD: Filter order and mean group delay (MAP, DAP) or (LFIR, DFIR); A: Allpass design, 
F: FIR design; (KJ): (Kwan & Jiang, 2009a); (LCR): (Lee et al., 2008); (LD): (Lu & Deng, 1999); 
FGD: Fractional group delay) 
 
The relationship between numerator and denominator orders, and optimal mean group 
delay of a VdIIR or FdIIR VFD filter is a subject of interest. Table 10 summarizes such 
relationships among those VdIIR and FdIIR VDF filters listed in Table 9. It can be observed 
from Table 10 that as  changes from 0.9     0.9625, the ratio D/(N+M) changes from 0.64 
to 0.67 for VdIIR VFD filters, and changes from 0.57 to 0.55 for FdIIR VFD filters. Also, as 
seen from Figs. 1-8, for the higher wideband side with  = 0.9625 and 0.95, there is a mean 
group delay value that yields a minimum erms value; but for the lower wideband side with  
= 0.925 and 0.9, each of the mean group delay curves shows that erms becomes lower much 
earlier at smaller D before reaching its minimum erms value. In other words, the mean group 
delay requirement is lower for lower wideband cutoff frequencies. From Table 10, in 
general, the VdIIR VFD filters require slightly higher optimal mean group delay values D 
than those of the corresponding FdIIR VFD filters.  
 
 

 

α N D R 
Freq. Responses Mag. Responses FGD Responses 

emax (dB) erms emax,1(dB) erms,1 emax,2 erms,2 

α1 49 

25 6 -46.317 4.790e-4 -46.373 3.607e-4 5.621e-1 7.708e-2 
28 7 -45.817 4.981e-4 -48.255 3.327e-4 6.545e-1 9.443e-2 
31 8 -45.492 5.203e-4 -46.819 3.439e-4 6.152e-1 1.034e-1 
34 3 -55.689 1.709e-4 -56.650 1.203e-4 3.135e-1 4.301e-2 
37 1 -56.746 1.157e-4 -56.792 8.227e-5 2.371e-1 3.090e-2 
40 2 -54.753 1.333e-4 -55.272 8.621e-5 2.725e-1 3.913e-2 
43 4 -52.061 1.811e-4 -54.511 1.181e-4 3.634e-1 5.468e-2 
46 5 -48.664 2.877e-4 -48.979 2.016e-4 3.676e-1 6.420e-2 

α2 46 

23 7 -55.398 2.194e-4 -56.439 1.629e-4 2.370e-1 3.347e-2 
26 6 -59.500 1.442e-4 -59.567 1.025e-4 1.855e-1 2.446e-2 
29 5 -59.982 1.310e-4 -60.924 9.276e-5 1.434e-1 2.400e-2 
32 2 -63.424 6.157e-5 -66.513 4.168e-5 1.025e-1 1.451e-2 
35 1 -64.515 5.514e-5 -67.411 3.558e-5 1.019e-1 1.364e-2 
38 3 -62.722 6.798e-5 -63.918 4.290e-5 1.184e-1 1.767e-2 
41 4 -57.588 9.448e-5 -57.757 7.247e-5 1.200e-1 1.731e-2 
44 8 -48.195 2.999e-4 -52.186 2.194e-4 5.620e-1 5.862e-2 

α3 41 

18 8 -49.959 3.716e-4 -50.563 2.537e-4 2.966e-1 4.916e-2 
21 6 -64.763 6.303e-5 -67.058 4.233e-5 7.008e-2 1.016e-2 
24 5 -69.381 3.348e-5 -70.084 2.327e-5 4.344e-2 6.336e-3 
27 2 -75.807 1.269e-5 -78.312 8.311e-6 2.229e-2 2.984e-3 
30 1 -75.789 1.082e-5 -80.087 6.474e-6 2.048e-2 3.090e-3 
33 3 -71.425 1.823e-5 -71.675 1.433e-5 2.420e-2 3.420e-3 
36 4 -67.853 2.618e-5 -69.170 1.809e-5 3.759e-2 5.315e-3 
39 7 -59.463 7.159e-5 -61.018 5.770e-5 1.011e-1 1.101e-2 

α4 36 

12 8 -54.423 3.608e-4 -54.631 2.655e-4 2.113e-1 3.317e-2 
15 7 -62.453 1.158e-4 -64.365 8.504e-5 7.312e-2 1.147e-2 
18 6 -71.255 2.661e-5 -73.122 1.942e-5 2.182e-2 3.217e-3 
21 3 -79.979 7.880e-6 -83.184 5.360e-6 8.086e-3 1.170e-3 
24 2 -83.278 6.257e-6 -85.250 4.068e-6 8.721e-3 1.314e-3 
27 1 -81.501 5.606e-6 -82.356 4.315e-6 6.449e-3 9.108e-4 
30 4 -76.734 8.225e-6 -82.492 5.195e-6 1.332e-2 1.626e-3 
33 5 -68.507 2.048e-5 -73.101 1.519e-5 2.204e-2 3.328e-3 

Table 7. Performances of gradient-based design (43) of VdIIR VFD filters versus mean group 
delay (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9; R: Rank; FGD: Fractional group delay) 
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α N D R Freq. Responses Mag. Responses FGD Responses 
emax (dB) erms emax,1(dB) erms,1 emax,2 erms,2 

α1 54 

24 9 -47.551 4.030e-4 -48.815 3.254e-4 3.946e-1 6.066e-2 
27 8 -49.821 2.791e-4 -49.826 2.345e-4 2.523e-1 4.390e-2 
30 7 -49.940 2.663e-4 -51.336 1.906e-4 3.675e-1 5.526e-2 
33 1 -58.117 1.360e-4 -59.459 1.055e-4 1.553e-1 2.391e-2 
36 2 -54.776 1.581e-4 -56.752 1.100e-4 2.200e-1 3.225e-2 
39 3 -53.351 1.695e-4 -58.289 1.097e-4 3.108e-1 4.832e-2 
42 4 -52.767 1.852e-4 -57.168 1.246e-4 3.521e-1 5.312e-2 
45 5 -51.723 2.027e-4 -54.003 1.500e-4 3.394e-1 4.971e-2 
48 6 -50.532 2.165e-4 -53.051 1.745e-4 3.007e-1 4.414e-2 

α2 51 

23 7 -57.352 1.585e-4 -57.948 1.258e-4 1.085e-1 1.823e-2 
26 4 -60.282 1.172e-4 -62.605 9.084e-5 8.234e-2 1.344e-2 
29 2 -60.166 1.051e-4 -64.946 7.397e-5 8.715e-2 1.359e-2 
32 1 -58.723 1.018e-4 -65.813 7.060e-5 1.013e-1 1.683e-2 
35 3 -56.737 1.073e-4 -63.980 7.180e-5 1.307e-1 1.956e-2 
38 5 -56.078 1.210e-4 -60.347 8.811e-5 1.470e-1 2.142e-2 
41 6 -57.176 1.354e-4 -58.376 1.015e-4 1.199e-1 1.825e-2 
44 8 -54.520 1.590e-4 -57.346 1.155e-4 1.488e-1 2.299e-2 
47 9 -51.036 2.173e-4 -58.471 1.441e-4 3.066e-1 5.044e-2 

α3 46 

17 9 -54.883 1.565e-4 -56.964 1.190e-4 1.131e-1 1.781e-2 
20 8 -60.232 7.723e-5 -65.677 5.865e-5 3.142e-2 5.028e-3 
23 5 -61.491 7.567e-5 -66.350 5.607e-5 3.709e-2 5.591e-3 
26 2 -61.693 7.237e-5 -68.770 5.183e-5 3.782e-2 5.498e-3 
29 1 -60.702 7.065e-5 -69.047 5.209e-5 3.796e-2 5.501e-3 
32 3 -62.120 7.440e-5 -66.268 5.689e-5 2.962e-2 4.939e-3 
35 4 -60.883 7.454e-5 -66.131 5.552e-5 4.267e-2 6.465e-3 
38 7 -59.235 7.703e-5 -67.887 5.477e-5 6.825e-2 1.023e-2 
41 6 -58.976 7.603e-5 -66.870 5.497e-5 6.936e-2 1.007e-2 

α4 41 

12 9 -55.792 1.883e-4 -58.359 1.342e-4 1.093e-1 1.991e-2 
15 8 -62.408 7.731e-5 -65.923 5.838e-5 3.030e-2 5.618e-3 
18 2 -63.307 5.875e-5 -71.407 4.177e-5 1.061e-2 1.921e-3 
21 5 -64.151 6.078e-5 -71.767 4.448e-5 1.876e-2 2.673e-3 
24 4 -63.959 6.049e-5 -69.984 4.491e-5 1.615e-2 2.565e-3 
27 1 -63.586 5.820e-5 -70.713 4.244e-5 9.738e-3 1.712e-3 
30 3 -61.756 5.975e-5 -70.908 4.170e-5 2.336e-2 3.916e-3 
33 6 -62.236 6.151e-5 -70.075 4.376e-5 3.241e-2 4.699e-3 
36 7 -61.444 6.189e-5 -68.939 4.454e-5 2.113e-2 3.729e-3 

Table 8. Performances of gradient-based design (43) of FdIIR VFD filters versus mean group 
delay (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9; R: Rank; FGD: Fractional group delay) 

 

  VdIIR FdIIR AP FIR 
(43) (43) (KJ) (LCR) (KJ) (LD) 

1 
D 37 33 56 56 28 28 

erms 1.157e-4 1.360e-4 3.246e-4 9.309e-3 8.242e-1 3.573e-3 

2 
D 35 32 53 53 26 26 

erms 5.514e-5 1.018e-4 5.626e-5 2.258e-4 1.493e-3 1.552e-3 

3 
D 30 29 48 48 24 24 

erms 1.082e-5 7.065e-5 1.264e-5 1.265e-5 7.957e-1 3.654e-4 

4 
D 27 27 43 43 21 21 

erms 5.606e-6 5.820e-5 4.987e-6 4.119e-6 1.310e-4 1.354e-4 
Table 9. Performances (erms) of VFD filters selected from Tables 6-8 (Keys: 1= 0.9625, 2= 
0.95, 3= 0.925, 4= 0.9; (KJ): (Kwan & Jiang, 2009a); (LCR): (Lee et al., 2008); (LD): (Lu & 
Deng, 1999)) 
 

  D N M N+M D/(N+M) 

VdIIR 

1 37 49 6 55 0.6727 
2 35 46 6 52 0.6731 
3 30 41 6 47 0.6383 
4 27 36 6 42 0.6429 

FdIIR 

1 33 54 6 60 0.5500 
2 32 51 6 57 0.5614 
3 29 46 6 52 0.5577 
4 27 41 6 47 0.5745 

Table 10. D/(N+M) for IIR VFD filters (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9) 
 

 
Fig. 1. erms versus mean group delay D (VdIIR VFD filter, α = 0.9625, N = 49, M = 6) 
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α N D R Freq. Responses Mag. Responses FGD Responses 
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24 9 -47.551 4.030e-4 -48.815 3.254e-4 3.946e-1 6.066e-2 
27 8 -49.821 2.791e-4 -49.826 2.345e-4 2.523e-1 4.390e-2 
30 7 -49.940 2.663e-4 -51.336 1.906e-4 3.675e-1 5.526e-2 
33 1 -58.117 1.360e-4 -59.459 1.055e-4 1.553e-1 2.391e-2 
36 2 -54.776 1.581e-4 -56.752 1.100e-4 2.200e-1 3.225e-2 
39 3 -53.351 1.695e-4 -58.289 1.097e-4 3.108e-1 4.832e-2 
42 4 -52.767 1.852e-4 -57.168 1.246e-4 3.521e-1 5.312e-2 
45 5 -51.723 2.027e-4 -54.003 1.500e-4 3.394e-1 4.971e-2 
48 6 -50.532 2.165e-4 -53.051 1.745e-4 3.007e-1 4.414e-2 
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23 7 -57.352 1.585e-4 -57.948 1.258e-4 1.085e-1 1.823e-2 
26 4 -60.282 1.172e-4 -62.605 9.084e-5 8.234e-2 1.344e-2 
29 2 -60.166 1.051e-4 -64.946 7.397e-5 8.715e-2 1.359e-2 
32 1 -58.723 1.018e-4 -65.813 7.060e-5 1.013e-1 1.683e-2 
35 3 -56.737 1.073e-4 -63.980 7.180e-5 1.307e-1 1.956e-2 
38 5 -56.078 1.210e-4 -60.347 8.811e-5 1.470e-1 2.142e-2 
41 6 -57.176 1.354e-4 -58.376 1.015e-4 1.199e-1 1.825e-2 
44 8 -54.520 1.590e-4 -57.346 1.155e-4 1.488e-1 2.299e-2 
47 9 -51.036 2.173e-4 -58.471 1.441e-4 3.066e-1 5.044e-2 

α3 46 

17 9 -54.883 1.565e-4 -56.964 1.190e-4 1.131e-1 1.781e-2 
20 8 -60.232 7.723e-5 -65.677 5.865e-5 3.142e-2 5.028e-3 
23 5 -61.491 7.567e-5 -66.350 5.607e-5 3.709e-2 5.591e-3 
26 2 -61.693 7.237e-5 -68.770 5.183e-5 3.782e-2 5.498e-3 
29 1 -60.702 7.065e-5 -69.047 5.209e-5 3.796e-2 5.501e-3 
32 3 -62.120 7.440e-5 -66.268 5.689e-5 2.962e-2 4.939e-3 
35 4 -60.883 7.454e-5 -66.131 5.552e-5 4.267e-2 6.465e-3 
38 7 -59.235 7.703e-5 -67.887 5.477e-5 6.825e-2 1.023e-2 
41 6 -58.976 7.603e-5 -66.870 5.497e-5 6.936e-2 1.007e-2 

α4 41 

12 9 -55.792 1.883e-4 -58.359 1.342e-4 1.093e-1 1.991e-2 
15 8 -62.408 7.731e-5 -65.923 5.838e-5 3.030e-2 5.618e-3 
18 2 -63.307 5.875e-5 -71.407 4.177e-5 1.061e-2 1.921e-3 
21 5 -64.151 6.078e-5 -71.767 4.448e-5 1.876e-2 2.673e-3 
24 4 -63.959 6.049e-5 -69.984 4.491e-5 1.615e-2 2.565e-3 
27 1 -63.586 5.820e-5 -70.713 4.244e-5 9.738e-3 1.712e-3 
30 3 -61.756 5.975e-5 -70.908 4.170e-5 2.336e-2 3.916e-3 
33 6 -62.236 6.151e-5 -70.075 4.376e-5 3.241e-2 4.699e-3 
36 7 -61.444 6.189e-5 -68.939 4.454e-5 2.113e-2 3.729e-3 

Table 8. Performances of gradient-based design (43) of FdIIR VFD filters versus mean group 
delay (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9; R: Rank; FGD: Fractional group delay) 
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1 
D 37 33 56 56 28 28 

erms 1.157e-4 1.360e-4 3.246e-4 9.309e-3 8.242e-1 3.573e-3 

2 
D 35 32 53 53 26 26 

erms 5.514e-5 1.018e-4 5.626e-5 2.258e-4 1.493e-3 1.552e-3 

3 
D 30 29 48 48 24 24 

erms 1.082e-5 7.065e-5 1.264e-5 1.265e-5 7.957e-1 3.654e-4 

4 
D 27 27 43 43 21 21 

erms 5.606e-6 5.820e-5 4.987e-6 4.119e-6 1.310e-4 1.354e-4 
Table 9. Performances (erms) of VFD filters selected from Tables 6-8 (Keys: 1= 0.9625, 2= 
0.95, 3= 0.925, 4= 0.9; (KJ): (Kwan & Jiang, 2009a); (LCR): (Lee et al., 2008); (LD): (Lu & 
Deng, 1999)) 
 

  D N M N+M D/(N+M) 

VdIIR 

1 37 49 6 55 0.6727 
2 35 46 6 52 0.6731 
3 30 41 6 47 0.6383 
4 27 36 6 42 0.6429 

FdIIR 

1 33 54 6 60 0.5500 
2 32 51 6 57 0.5614 
3 29 46 6 52 0.5577 
4 27 41 6 47 0.5745 

Table 10. D/(N+M) for IIR VFD filters (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9) 
 

 
Fig. 1. erms versus mean group delay D (VdIIR VFD filter, α = 0.9625, N = 49, M = 6) 
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Fig. 2. erms versus mean group delay D (VdIIR VFD filter, α = 0.95, N = 46, M = 6) 

 

 
Fig. 3. erms versus mean group delay D (VdIIR VFD filter, α = 0.925, N = 41, M = 6) 

 

 
Fig. 4. erms versus mean group delay D (VdIIR VFD filter, α = 0.90, N = 36, M = 6) 
 

 
Fig. 5. erms versus mean group delay D (FdIIR VFD filter, α = 0.9625, N = 54, M = 6) 
 

 
Fig. 6. erms versus mean group delay D (FdIIR VFD filter, α = 0.95, N = 51, M = 6) 
 

 
Fig. 7. erms versus mean group delay D (FdIIR VFD filter, α = 0.925, N = 46, M = 6) 
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Fig. 2. erms versus mean group delay D (VdIIR VFD filter, α = 0.95, N = 46, M = 6) 

 

 
Fig. 3. erms versus mean group delay D (VdIIR VFD filter, α = 0.925, N = 41, M = 6) 

 

 
Fig. 4. erms versus mean group delay D (VdIIR VFD filter, α = 0.90, N = 36, M = 6) 
 

 
Fig. 5. erms versus mean group delay D (FdIIR VFD filter, α = 0.9625, N = 54, M = 6) 
 

 
Fig. 6. erms versus mean group delay D (FdIIR VFD filter, α = 0.95, N = 51, M = 6) 
 

 
Fig. 7. erms versus mean group delay D (FdIIR VFD filter, α = 0.925, N = 46, M = 6) 
 



Digital Filters202

 
Fig. 8. erms versus mean group delay D (FdIIR VFD filter, α = 0.90, N = 41, M = 6) 
  

 
Fig. 9. Magnitude responses of VdIIR VFD filter obtained by gradient-based design method 
with (43) (α = 0.9625, N = 49, M = 6, D = 37) 
 

 
Fig. 10. Group delay responses of VdIIR VFD filter obtained by gradient-based design 
method with (43) (α = 0.9625, N = 49, M = 6, D = 37) 

 
Fig. 11. Magnitude responses of FdIIR VFD filter obtained by gradient-based design method 
with (43) (α = 0.9625, N = 54, M = 6, D = 33) 
 

 
Fig. 12. Group delay responses of FdIIR VFD filter obtained by gradient-based design 
method with (43) (α = 0.9625, N = 54, M = 6, D = 33) 

 
6.5 Overall IIR, allpass, and FIR VFD filter performances  
To facilitate explanation in this sub-section, (29), (34), (35), (43) denote different proposed 
VdIIR and FdIIR VFD design methods explained at the beginning of Section 6.2 and listed 
on Tables 3-5 and 9. Using the same number of distinct variable coefficients at each of the 
four specified wideband cutoff frequencies, design results indicate that: (a) When compared 
to the corresponding FIR VFD filters (KJ; LD) shown in Table 6: As seen from Table 5, all the 
design methods (except (ZK)) for VdIIR and FdIIR VFD filters could achieve improved erms 
performances. (b) When compared to the corresponding AP VFD filters (KJ; LCR) shown in 
Table 6, the following VdIIR VFD filters could achieve improved erms performances: (i) (29) 
over (LCR) for  = 0.9625 (see Table 5); (ii) (35) over (KJ; LCR) for  = 0.9625 and over (LCR) 
for  = 0.95 (see Table 5); and (iii) (43) over (KJ; LCR) for 0.925     0.9625 (see Table 9). (c) 
When compared to the corresponding AP VFD filters (KJ; LCR) shown in Table 6, the 
following FdIIR VFD filters could achieve improved erms performances: (i) (29) over (LCR) 
for  = 0.9625 (see Table 5); (ii) (34) over (KJ; LCR) for  = 0.9625 and over (LCR) for  = 0.95 
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Fig. 8. erms versus mean group delay D (FdIIR VFD filter, α = 0.90, N = 41, M = 6) 
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Fig. 12. Group delay responses of FdIIR VFD filter obtained by gradient-based design 
method with (43) (α = 0.9625, N = 54, M = 6, D = 33) 

 
6.5 Overall IIR, allpass, and FIR VFD filter performances  
To facilitate explanation in this sub-section, (29), (34), (35), (43) denote different proposed 
VdIIR and FdIIR VFD design methods explained at the beginning of Section 6.2 and listed 
on Tables 3-5 and 9. Using the same number of distinct variable coefficients at each of the 
four specified wideband cutoff frequencies, design results indicate that: (a) When compared 
to the corresponding FIR VFD filters (KJ; LD) shown in Table 6: As seen from Table 5, all the 
design methods (except (ZK)) for VdIIR and FdIIR VFD filters could achieve improved erms 
performances. (b) When compared to the corresponding AP VFD filters (KJ; LCR) shown in 
Table 6, the following VdIIR VFD filters could achieve improved erms performances: (i) (29) 
over (LCR) for  = 0.9625 (see Table 5); (ii) (35) over (KJ; LCR) for  = 0.9625 and over (LCR) 
for  = 0.95 (see Table 5); and (iii) (43) over (KJ; LCR) for 0.925     0.9625 (see Table 9). (c) 
When compared to the corresponding AP VFD filters (KJ; LCR) shown in Table 6, the 
following FdIIR VFD filters could achieve improved erms performances: (i) (29) over (LCR) 
for  = 0.9625 (see Table 5); (ii) (34) over (KJ; LCR) for  = 0.9625 and over (LCR) for  = 0.95 
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(see Table 5); (iii) (43) over (KJ; LCR) for  = 0.9625 and over (LCR) for  = 0.95 (see Table 9); 
(iv) (KJ) over (LCR) for 0.95     0.9625 (see Table 5); and (v) (TCK) over (LCR) for  = 
0.9625 (see Table 5). 
 
Due to the mirror symmetric coefficient relation in an allpass VFD filter and for stability 
reason, it is a common practice to select its mean group delay to be the same as its filter 
order. Based on Table 10, as α decreases from 0.9625 to 0.9, the reductions in mean group 
delay values of (a) VdIIR VFD filters versus AP VFD filters range approximately from 1.5 to 
1.6 times; and (b) FdIIR VFD filters versus AP VFD filters are higher and range 
approximately from 1.7 to 1.6 times.  
 
The maximum pole radius versus fractional delay t of the four VdIIR VFD filters as listed in 
Table 9 and the four AP VFD filters designed by (KJ) and (LCR) are plotted with 1001 points, 
respectively, in Figs. 13-15. Figs. 13-15 indicate that all the three types of variable-
denominator designs are stable; and the maximum pole radius at any t reduces as the 
passband cutoff frequency is lowered. As a general trend, it can be observed from the results 
that the error performances of each type of the VdIIR VFD filters, the FdIIR VFD filters, the 
AP VFD filters, and the FIR VFD filters improves along with a reduction in filter order with 
decreasing passband cutoff frequency . 
 

 
Fig. 13. Maximum pole radius of VdIIR VFD filter obtained by gradient-based design 
method with (43) versus fractional delay t (Solid: α = 0.9625, N = 49, M = 6, D = 37; Dashed: α 
= 0.95, N = 46, M = 6, D = 35; Dash-dot: α = 0.925, N = 41, M = 6, D = 30; Dotted: α = 0.90, N = 
36, M = 6, D = 27) 
 

 
Fig. 14. Maximum pole radius of allpass VFD filter designed by (Kwan & Jiang, 2009a) 
versus fractional delay t (Solid: α = 0.9625, MAP = DAP = 56; Dashed: α = 0.95, MAP = DAP = 53; 
Dash-dot: α = 0.925, MAP = DAP = 48; Dotted: α = 0.90, MAP = DAP = 43) 
 

 
Fig. 15. Maximum pole radius of allpass VFD filter designed by (Lee et al., 2008) versus 
fractional delay t (Solid: α = 0.9625, MAP = DAP = 56; Dashed: α = 0.95, MAP = DAP = 53; Dash-
dot: α = 0.925, MAP = DAP = 48; Dotted: α = 0.90, MAP = DAP = 43) 

 
7. Summary 

This chapter introduces an integrated design of IIR variable fractional delay (VFD) digital 
filters with variable and fixed denominators. Both sequential and gradient-based design 
approaches in the weighted least-squares (WLS) sense are adopted. The results obtained are 
compared to other design methods for IIR, allpass, and FIR VFD filters. In the sequential 
design method, the Levy’s method is adopted along with an iterative reweighting technique 
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(see Table 5); (iii) (43) over (KJ; LCR) for  = 0.9625 and over (LCR) for  = 0.95 (see Table 9); 
(iv) (KJ) over (LCR) for 0.95     0.9625 (see Table 5); and (v) (TCK) over (LCR) for  = 
0.9625 (see Table 5). 
 
Due to the mirror symmetric coefficient relation in an allpass VFD filter and for stability 
reason, it is a common practice to select its mean group delay to be the same as its filter 
order. Based on Table 10, as α decreases from 0.9625 to 0.9, the reductions in mean group 
delay values of (a) VdIIR VFD filters versus AP VFD filters range approximately from 1.5 to 
1.6 times; and (b) FdIIR VFD filters versus AP VFD filters are higher and range 
approximately from 1.7 to 1.6 times.  
 
The maximum pole radius versus fractional delay t of the four VdIIR VFD filters as listed in 
Table 9 and the four AP VFD filters designed by (KJ) and (LCR) are plotted with 1001 points, 
respectively, in Figs. 13-15. Figs. 13-15 indicate that all the three types of variable-
denominator designs are stable; and the maximum pole radius at any t reduces as the 
passband cutoff frequency is lowered. As a general trend, it can be observed from the results 
that the error performances of each type of the VdIIR VFD filters, the FdIIR VFD filters, the 
AP VFD filters, and the FIR VFD filters improves along with a reduction in filter order with 
decreasing passband cutoff frequency . 
 

 
Fig. 13. Maximum pole radius of VdIIR VFD filter obtained by gradient-based design 
method with (43) versus fractional delay t (Solid: α = 0.9625, N = 49, M = 6, D = 37; Dashed: α 
= 0.95, N = 46, M = 6, D = 35; Dash-dot: α = 0.925, N = 41, M = 6, D = 30; Dotted: α = 0.90, N = 
36, M = 6, D = 27) 
 

 
Fig. 14. Maximum pole radius of allpass VFD filter designed by (Kwan & Jiang, 2009a) 
versus fractional delay t (Solid: α = 0.9625, MAP = DAP = 56; Dashed: α = 0.95, MAP = DAP = 53; 
Dash-dot: α = 0.925, MAP = DAP = 48; Dotted: α = 0.90, MAP = DAP = 43) 
 

 
Fig. 15. Maximum pole radius of allpass VFD filter designed by (Lee et al., 2008) versus 
fractional delay t (Solid: α = 0.9625, MAP = DAP = 56; Dashed: α = 0.95, MAP = DAP = 53; Dash-
dot: α = 0.925, MAP = DAP = 48; Dotted: α = 0.90, MAP = DAP = 43) 

 
7. Summary 

This chapter introduces an integrated design of IIR variable fractional delay (VFD) digital 
filters with variable and fixed denominators. Both sequential and gradient-based design 
approaches in the weighted least-squares (WLS) sense are adopted. The results obtained are 
compared to other design methods for IIR, allpass, and FIR VFD filters. In the sequential 
design method, the Levy’s method is adopted along with an iterative reweighting technique 
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to transform the original nonconvex approximation error into a (convex) quadratic form. 
The design problem (at each iteration) can be further cast as a second-order cone 
programming (SOCP) problem. The stability of such a designed IIR VFD filter can be 
ensured by imposing a set of linear stability constraints derived from a sufficient condition 
in terms of the positive realness. In the gradient-based design method, a simple SOCP 
problem is first formulated using the Levy’s method. The design is then refined through a 
local search starting from the initial design obtained. The stability of the initial filter can be 
ensured by the linear positive-realness based stability constraints or with the use of a 
regularization term aimed to suppress the energy of the denominator coefficients. Four sets 
of wideband filter examples are adopted with performances analyzed to illustrate the 
performances of the proposed design methods. 

 
8. Conclusions 

In this chapter, an integrated sequential design method and an integrated gradient-based 
design method for IIR VFD filters with variable-denominator and fixed-denominator have 
been presented. In contrast to the previous two-stage design methods, by merging the 
polynomial coefficient fitting into each respective integrated design, the approximation 
error caused by a separate polynomial coefficient fitting stage is eliminated. Also, instead of 
modeling denominator and optimizing numerator in separate steps, each of the sequential 
and gradient-based design methods jointly optimizes the numerator and denominator 
coefficients. Consequently, during the design procedure any change on any numerator or 
denominator coefficient can be utilized to optimize all the numerator and denominator 
coefficients in the subsequent design procedure. This facilitates the search of a better design 
in the coefficient vector space. The results of four sets of wideband filter examples designed 
using the proposed design methods, the VdIIR VFD (ZK) and the FdIIR VFD (KJ; TCK) 
design methods, and a number of AP VFD (KJ; LCR) and FIR VFD (KJ; LD) design methods 
indicate that IIR VFD filters could achieve some erms improvements over the other two types 
of VFD filters along with reduced mean group delays when compared to AP VFD filters. In 
particular, erms improvements can be observed in (a) the proposed gradient-based VdIIR 
design (with (43)) for wider band designs with  0.925 ≤ α ≤ 0.9625; and (b) the proposed 
gradient-based FdIIR design (with (43)) for the widest band design with α = 0.9625. For 
narrower band designs such as α = 0.9, erms improvements become obvious in the AP VFD 
designs (KJ; TCK). In term of design complexity, the FIR VFD designs (KJ; LD) remain to be 
the simplest. Finally, it should be emphasized that the error performances of a VFD filter 
design depend not only on the type (IIR, AP, and FIR) of VFD filters, but also depend on the 
effectiveness of its design method.  
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1. Complex Coefficient IIR Digital Filters – Basic Theory 

1.1 Introduction  
Interest in complex signal processing goes back quite some time: in 1960 Helstrom 
(Helstrom, 1960) and Woodward (Woodward, 1960) used the complex envelope 
presentation to solve problems with signal detection, as did Bello (Bello, 1963), who used it 
to describe time-invariant linear channels. A number of publications at that time also 
considered complex signal processing but on a purely theoretical basis. The concept of 
digital filters with complex coefficients, which will be also referred to as complex filters, was 
developed by Crystal and Ehrman (Crystal & Ehrman, 1968). This work in fact marks the 
beginning of interest in complex filters and is one of the most often-cited publications. It 
demonstrated the increased effectiveness of complex signal processing compared to real 
signal processing and focused the attention of researchers on that new area of science. This 
area subsequently progressed well, especially in telecommunications, where the complex 
representation of signals is very useful as it allows the simple interpretation and realization 
of quite complicated processing tasks, such as modulation, sampling and quantization.  
Digital filters with complex coefficients have attracted great interest, owing to their 
advantages when processing both real and complex signals. As they have both real and 
imaginary inputs and outputs, the signals they process have to be likewise separated into 
real and imaginary parts in order to be represented as complex signals. Complex filters have 
been of theoretical interest for a long time but have only been the subject of intensive 
experimental investigation over the past two decades, thanks to the rapid development of 
technology. They have many areas of application, one of the most important being modern 
telecommunications, which very often uses narrowband signals which are complex in 
nature (Martin, 2003). Digital complex filters are used to generate SSB (Single Side Band) 
narrowband signals, typically employed in many wireless telecommunication devices, e.g. 
SSB transmitters and receivers, complex -modulators, trans-multiplexors, radio-receivers, 
mobile terminals etc. These devices employ processes such as complex modulation, filtering, 
mixing, speech analysis and synthesis, and adaptive filtering. Complex filtering is also 
preferred when DFT (Discrete Fourier Transform) is carried out, as it is a linear combination 
of complex components. This type of processing is required for high-speed wireless 
standards. Many of the research problems associated with complex digital filtering have 
been successfully solved but scientific and technological advances challenge researchers 
with new problems or require new and better solutions to existing problems. 

9
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In this chapter we examine IIR (Infinite Impulse Response) digital filters only. They are 
more difficult to synthesize but are more efficient and selective than FIR (Finite Impulse 
Response) filters. In general, the choice between FIR and IIR digital filters affects both the 
filter design process and the implementation of the filter. FIR filters are sufficient for most 
filtering applications, due to their two main advantages: an exact linear phase response and 
permanent stability.  

 
1.2 Complex Signals and Complex Filters – an Overview 
A complex signal is usually depicted by: 
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where “R” and “I” indicate real and imaginary components. The spectrum of the complex 
signal X(t) is in the positive frequency C, while that of the real one XR(t) is in the frequencies 
C and - C.  
There are two well-known approaches to the complex representation of the signals – by 
inphase and quadrature components, and using the concept of analytical representation. 
These approaches differ in the way the imaginary part of the complex signal is formed. The 
first approach can be regarded as a low-frequency envelope modulation using a complex 
carrier signal. In the frequency domain this means linear translation of the spectrum by a 
step of C. Thus, a narrowband signal with the frequency of C can be represented as an 
envelope (the real part of the complex signal – XR(t)), multiplied by a complex exponent 

tj Ce  , named cissoid (Crystal & Ehrman, 1968) or complexoid (Martin, 2003) (Fig. 1). 
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Fig. 1. Complex representation of a narrowband signal. 
 
Analytical representation is the second basic approach to displaying complex signals. The 
negative frequency components are simply reduced to zero and a complex signal named 
analytic is formed. The real signal and its Hilbert transform are respectively the real and 
imaginary parts of the analytic signal, which occupies half of the real signal frequency band 
while its real and imaginary components have the same amplitude and 90 phase-shift. 
Analytic signals are, for example, the multiplexed OFDM (Orthogonal Frequency Division 
Multiplexing) symbols in wireless communication systems. 
Complex signals are easily processed by complex circuits, in which complex coefficient 
digital filters play a special role. In contrast to real coefficient filters, their magnitude 
responses are not symmetric with respect to the zero frequency. A bandpass (BP) complex 
filter, which is arithmetically symmetric with regards to its central frequency, can be derived 
by linear translation with a step  of the magnitude response of a real lowpass (LP) filter 
(Crystal & Ehrman, 1968). This is equivalent to applying the substitution: 

 

 

    sincos jzezz 1j11  (2) 

 
to the real transfer function (also called real-prototype transfer function) thus obtaining the 
analytical expression of the complex transfer function:   
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HComplex (z) is a transfer function with complex coefficients and with the same order of N as the 
real prototype HReal (z), while its real and imaginary parts HR(z) and HI(z) are of doubled 
order 2N real coefficient transfer functions. When HReal (z) is an LP transfer function then 
HR(z) and HI(z) are of BP type. For a highpass (HP) real prototype transfer function we get 
HR(z) and HI(z), respectively of BP and bandstop (BS) types.  
The substitution (2) is also termed “pole rotation” because it rotates the poles of the real 
transfer function to an angle of  both clockwise and anti-clockwise, simultaneously 
doubling their number (Fig. 2).   
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Fig. 2. Pole rotation of a first-order real transfer function after applying the substitution (2). 
 
Starting with: 
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and supposing that the quantities in (4) are complex, they can be represented by their real 
and imaginary parts: 
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Then the equation (4) becomes: 
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real prototype HReal (z), while its real and imaginary parts HR(z) and HI(z) are of doubled 
order 2N real coefficient transfer functions. When HReal (z) is an LP transfer function then 
HR(z) and HI(z) are of BP type. For a highpass (HP) real prototype transfer function we get 
HR(z) and HI(z), respectively of BP and bandstop (BS) types.  
The substitution (2) is also termed “pole rotation” because it rotates the poles of the real 
transfer function to an angle of  both clockwise and anti-clockwise, simultaneously 
doubling their number (Fig. 2).   
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Fig. 2. Pole rotation of a first-order real transfer function after applying the substitution (2). 
 
Starting with: 
 
      zXzHzY Complex   (4) 
 
and supposing that the quantities in (4) are complex, they can be represented by their real 
and imaginary parts: 
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Then the equation (4) becomes: 
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and its real and imaginary parts respectively are: 
 
                    zXzHzXzHzY;zXzHzXzHzY IRRIIIIRRR  . (7) 

 
According to the equations (7), the block-diagram of a complex filter will be as shown in 
Fig. 3. 
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Fig. 3. Block-diagram of a complex filter. 
 
The synthesis of a complex filter is an important procedure because its sensitivity is 
influenced by the derived realization. A non-canonic complex filter realization will be 
obtained if HR(z) and HI(z) are synthesised individually. 
The process of synthesising the complex filter can be better understood by examining a 
particular filter realization – a real LP first-order filter section (Fig. 4a) with transfer 
function:  
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The complex transfer function obtained after the substitution (2) is applied to the real 
transfer function (8) is: 
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The separation of its real and imaginary parts produces: 
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Fig. 4. Realization of (а) real LP first-order filter section; (b) direct-form complex BP filter 
section; (c) complex BP filter (Watanabe-Nishihara method). 
 
The difference equation  corresponding to the transfer function (9) is: 
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Direct realization of (11) leads to the structure depicted in Fig. 4b. Obviously the realization 
is canonic only with respect to the delays. The direct realization of complex filters is studied 
in some publications (Sim, 1987) although the sensitivity is not minimized.  
 
One of the best methods for the realization of complex structures is offered by Watanabe 
and Nishihara (Watanabe & Nishihara, 1991). The structure of the real prototype is doubled, 
for the real input and output as well as for the imaginary input and output (Fig. 5). Bearing 
in mind that processed signals are complex, after applying the complex transformation (2) 
the signals after each delay unit are described as: 
 

    .cossin;sincos 11  
IRIIRR AAzBAAzB  (12) 

 
Applying the Watanabe-Nishihara method to the real LP first-order filter section in Fig. 4a, 
the complex filter shown in Fig. 4c is derived.  
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and its real and imaginary parts respectively are: 
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The synthesis of a complex filter is an important procedure because its sensitivity is 
influenced by the derived realization. A non-canonic complex filter realization will be 
obtained if HR(z) and HI(z) are synthesised individually. 
The process of synthesising the complex filter can be better understood by examining a 
particular filter realization – a real LP first-order filter section (Fig. 4a) with transfer 
function:  
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The complex transfer function obtained after the substitution (2) is applied to the real 
transfer function (8) is: 
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The separation of its real and imaginary parts produces: 
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Fig. 4. Realization of (а) real LP first-order filter section; (b) direct-form complex BP filter 
section; (c) complex BP filter (Watanabe-Nishihara method). 
 
The difference equation  corresponding to the transfer function (9) is: 
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Direct realization of (11) leads to the structure depicted in Fig. 4b. Obviously the realization 
is canonic only with respect to the delays. The direct realization of complex filters is studied 
in some publications (Sim, 1987) although the sensitivity is not minimized.  
 
One of the best methods for the realization of complex structures is offered by Watanabe 
and Nishihara (Watanabe & Nishihara, 1991). The structure of the real prototype is doubled, 
for the real input and output as well as for the imaginary input and output (Fig. 5). Bearing 
in mind that processed signals are complex, after applying the complex transformation (2) 
the signals after each delay unit are described as: 
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Applying the Watanabe-Nishihara method to the real LP first-order filter section in Fig. 4a, 
the complex filter shown in Fig. 4c is derived.  
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Fig. 5. Complex structure realized by Watanabe and Nishihara method. 
 
The Watanabe-Nishihara method is universally applicable to any real structure, the complex 
structure obtained being canonic with respect to the multipliers and delay units if the sin- 
and cosin-multipliers are not counted. Moreover, the number of identical circuit 
transformations performed and the number of multipliers in the real filter-prototype are the 
same.  
A special class of filters, named orthogonal complex filters, is derived (Sim, 1987) (Watanabe & 
Nishihara, 1991) (Nie et al., 1993), when  is exactly equal to /2 in the complex 
transformation (2): 
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sin

2
cos11 jzz  or jzz  . (13) 

 
These filters are used for narrowband signal processing. Obtained after the orthogonal 
transformation (13) is applied, the orthogonal complex transfer function H(-jz) has 
alternately-changing coefficients, i.e. real and imaginary. The magnitude response of an 
orthogonal complex filter is symmetric with respect to the central frequency c, which is 
exactly 1/4 of the real filter’s sampling frequencys. 

 
1.3 Sensitivity Considerations  
Digital filters are prone to problems from two main sources of error. The first is known as 
transfer function sensitivity with respect to coefficients and refers to the quantization of 
multiplier coefficients, which changes the transfer function carried out by the filter. The 
second source of error is roundoff noise due to finite arithmetical operations, which degrades 
the signal-to-noise ratio (SNR) at the digital filter output. These errors have been extensively 
discussed in the literature.  
 

 

In this chapter normalized (classical or Bode) sensitivity is used to estimate how the changes 
of a given multiplier coefficient  influence the magnitude response of the structure: 
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The overall sensitivity to all multiplier coefficients is evaluated using the worst-case 
sensitivity 
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or the Schoefler sensitivity (SS), defined as WS but with quadratic addends (Proakis & 
Manolakis, 2006): 
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Minimization of sensitivity is a well-studied problem but the method that is most widely 
used by researchers is sensitivity minimization by coefficient conversion. In this chapter we use 
Nishihara’s coefficient conversion approach (Nishihara, 1980). 
The sensitivity of magnitude, phase response, group-delay etc. is a function of frequency. 
This has to be taken into account when different digital structures are compared to each 
other because the sensitivity may differ in the different frequency bands. An indirect 
criterion for the sensitivity of a transfer function in a particular frequency band is the pole-
location density in the corresponding area of the unit circle for a given word-length.  
Frequency-dependent sensitivities allow different digital filter realizations to be compared 
to each other in a wide frequency range. For this reason, magnitude sensitivity function (14) 
and worst-case sensitivity (15) will mainly be considered in this work. 

 
2. Orthogonal Complex IIR Digital Filters – Synthesis  
and Sensitivity Investigations 

2.1 Introductory Considerations 
The synthesis of orthogonal complex low-sensitivity canonic first- and second-order digital 
filter sections allows an efficient orthogonal cascade filter to be achieved. Such a filter can be 
developed using the method of approximation and design given in (Stoyanov et al., 1997). 
The procedure is simple in the case of arithmetically symmetric BP/BS specifications and 
consists of the following steps:  

1. Shift the specifications along the frequency axis until the zero frequency becomes 
central for them.  

2. Apply any possible LP or HP (for BS specifications) approximation, which produces 
the transfer function in a factored form.  

3. Select or develop low-sensitivity canonic first- and second-order LP/HP filter sections.  

4. Apply the circuit transform (13) 11   jzz  to obtain the orthogonal sections, which 
are used to form the desired orthogonal complex BP/BS cascade realization.  
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Fig. 5. Complex structure realized by Watanabe and Nishihara method. 
 
The Watanabe-Nishihara method is universally applicable to any real structure, the complex 
structure obtained being canonic with respect to the multipliers and delay units if the sin- 
and cosin-multipliers are not counted. Moreover, the number of identical circuit 
transformations performed and the number of multipliers in the real filter-prototype are the 
same.  
A special class of filters, named orthogonal complex filters, is derived (Sim, 1987) (Watanabe & 
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transformation (2): 
 

 





 




 

2
sin

2
cos11 jzz  or jzz  . (13) 

 
These filters are used for narrowband signal processing. Obtained after the orthogonal 
transformation (13) is applied, the orthogonal complex transfer function H(-jz) has 
alternately-changing coefficients, i.e. real and imaginary. The magnitude response of an 
orthogonal complex filter is symmetric with respect to the central frequency c, which is 
exactly 1/4 of the real filter’s sampling frequencys. 

 
1.3 Sensitivity Considerations  
Digital filters are prone to problems from two main sources of error. The first is known as 
transfer function sensitivity with respect to coefficients and refers to the quantization of 
multiplier coefficients, which changes the transfer function carried out by the filter. The 
second source of error is roundoff noise due to finite arithmetical operations, which degrades 
the signal-to-noise ratio (SNR) at the digital filter output. These errors have been extensively 
discussed in the literature.  
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Minimization of sensitivity is a well-studied problem but the method that is most widely 
used by researchers is sensitivity minimization by coefficient conversion. In this chapter we use 
Nishihara’s coefficient conversion approach (Nishihara, 1980). 
The sensitivity of magnitude, phase response, group-delay etc. is a function of frequency. 
This has to be taken into account when different digital structures are compared to each 
other because the sensitivity may differ in the different frequency bands. An indirect 
criterion for the sensitivity of a transfer function in a particular frequency band is the pole-
location density in the corresponding area of the unit circle for a given word-length.  
Frequency-dependent sensitivities allow different digital filter realizations to be compared 
to each other in a wide frequency range. For this reason, magnitude sensitivity function (14) 
and worst-case sensitivity (15) will mainly be considered in this work. 

 
2. Orthogonal Complex IIR Digital Filters – Synthesis  
and Sensitivity Investigations 

2.1 Introductory Considerations 
The synthesis of orthogonal complex low-sensitivity canonic first- and second-order digital 
filter sections allows an efficient orthogonal cascade filter to be achieved. Such a filter can be 
developed using the method of approximation and design given in (Stoyanov et al., 1997). 
The procedure is simple in the case of arithmetically symmetric BP/BS specifications and 
consists of the following steps:  

1. Shift the specifications along the frequency axis until the zero frequency becomes 
central for them.  

2. Apply any possible LP or HP (for BS specifications) approximation, which produces 
the transfer function in a factored form.  

3. Select or develop low-sensitivity canonic first- and second-order LP/HP filter sections.  

4. Apply the circuit transform (13) 11   jzz  to obtain the orthogonal sections, which 
are used to form the desired orthogonal complex BP/BS cascade realization.  
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The procedure becomes a lot more difficult in the case of non-symmetric specifications. 
There are, however, methods of solving the problems but at the price of quite complicated 
mathematics and transformations (Takahashi et. al., 1992) (Martin, 2005). 
The last two steps in the above-described procedure are discussed here. Some low-
sensitivity canonic first- and second-order orthogonal complex BP/BS digital filter sections 
are developed and their low sensitivities are experimentally demonstrated.  
The Watanabe-Nishihara method (Watanabe & Nishihara, 1991) is selected to develop new 
sections. According to this method, it is expected that the sensitivity properties of the proto-
type circuit will be inherited by the orthogonal circuit obtained after the transformation. 
Starting from that expectation, we apply the following strategy: first select or develop very 
low-sensitivity LP/HP prototypes for a given pole-position and then apply the orthogonal 
circuit transformation to derive the orthogonal complex BP/BS digital filter sections.  
The selection of LP/HP first- and second-order real prototype-sections requires the 
following criteria to be met: 

- The circuits must have canonic structures; 
- The magnitude response must be unity for DC (in the case of LP transfer 

functions), likewise for fs/2 (in the case of HP transfer functions), thus providing 
zero magnitude sensitivity; 

- The sensitivity must be minimized; 
- Prototype sections must be free of limit cycles 

 
2.2 Low-Sensitivity Orthogonal Complex IIR First- Order Filter Sections 
In order to derive a narrowband orthogonal complex BP filter, a narrowband LP real filter-
prototype must be used. When the orthogonal substitution is applied to an HP real 
prototype, the orthogonal complex filter will have both BP and BS outputs. The most 
advantageous approach is to employ a universal real digital filter section, which 
simultaneously realizes both LP and HP transfer functions.  
After a comprehensive search, we selected the best two universal first-order real filter-
prototype structures that meet the above-listed requirements. They are: MHNS-section (Mitra 
et al., 1990-a) and a low-sensitivity LS1b-structure (Fig. 6a) (Topalov & Stoyanov, 1990).  
When the Watanabe-Nishihara orthogonal circuit transformation is applied to the real filter-
prototypes, the orthogonal complex LS1b (Fig. 6b) and MHNS filter structures are obtained 
(Stoyanov et al., 1996).  
After the orthogonal circuit transform (13) is applied to the LP real transfer function (18) 

 zHLP
bLS1  the resulting orthogonal complex transfer function  jzH LPbLS 1  has complex 

coefficients, which are alternating real and imaginary numbers. Being a complex transfer 
function, it can be represented by its real and imaginary parts, which are of double order 
and are real coefficients: 
 
       zjHzHjzH I
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R

LPbLSLPbLS   111 . (17) 
 
Because the real prototype section is universal, i.e. has simultaneous LP and HP outputs, the 
orthogonal structure has two inputs – real and imaginary, and four outputs – two real (R1 
and R2) and two imaginary (I1 and I2). Thus there are eight realized transfer functions, in 
the form of four pairs: the two parts of each pair are identical to each other and also equal to 

 

the real and imaginary parts of the LP- and HP-based orthogonal transfer functions - 
(20)(23). Only (22) is of BS type, the rest are BP. The central frequency of an orthogonal 
filter C is constant and is a quarter of the sampling frequency s.  
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Fig. 6. LS1b orthogonal complex section derivation (Watanabe-Nishihara transformation). 
 

The same approach, when applied to the MHNS real filter-prototype section, produces the 
orthogonal complex MHNS structure (Stoyanov et al., 1996). 
Fig. 7a depicts the worst-case gain-sensitivities for the same pole positions in LS1b and 
MHNS universal real filter-prototypes. It is apparent that the LS1b real section shows 
around a hundred times lower sensitivity than the MHNS real structure in almost the entire 
frequency range – from 0 to s/2. The LS1b-section realizes unity gain on both its outputs, it 
is canonic with respect to the multipliers and exhibits very low sensitivity in the important 
applications of narrowband LP and wideband HP filters.  
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Fig. 6. LS1b orthogonal complex section derivation (Watanabe-Nishihara transformation). 
 

The same approach, when applied to the MHNS real filter-prototype section, produces the 
orthogonal complex MHNS structure (Stoyanov et al., 1996). 
Fig. 7a depicts the worst-case gain-sensitivities for the same pole positions in LS1b and 
MHNS universal real filter-prototypes. It is apparent that the LS1b real section shows 
around a hundred times lower sensitivity than the MHNS real structure in almost the entire 
frequency range – from 0 to s/2. The LS1b-section realizes unity gain on both its outputs, it 
is canonic with respect to the multipliers and exhibits very low sensitivity in the important 
applications of narrowband LP and wideband HP filters.  
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Fig. 7. Worst-case sensitivities for the LS1b and MHNS filters (a) real –prototypes (LP 
outputs); (b) orthogonal structures for real input – real output BP transfer functions. 
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(b) 

Fig. 8. Magnitude responses of the LS1b (a) and MHNS (b) orthogonal complex filter 
sections for different word-lengths. 
 

 

For the same poles (=0.99 and =0.005), the worst-case sensitivity is also investigated for 
the orthogonal complex structures. In Fig. 7b graphical results for the BP transfer 
functions  zHR

LPbLS 1  and  zHR
LPMHNS  are presented. The sensitivity of the LP LS1b-based 

orthogonal section is approximately a hundred times lower over the whole frequency range. 
Hence, in terms of sensitivity, the orthogonal structures have the same behaviour pattern as 
their real filter-prototypes.  
Some experimental results of the magnitude responses following the quantization of  and 
multipliers are shown in Fig. 8. Canonic Sign-Digit Code (CSDC) is used, together with 
fixed point arithmetic. Narrowband BP and BS orthogonal complex filters are investigated 
for poles close to the unit circle (p1,2=j0.99). The magnitude response of the LS1b orthogonal 
complex filter does not deteriorate but coincides with the ideal when the word-length is 4, 
or even 3, bits (Fig. 8a). The MHNS orthogonal structure (Fig. 8b) is more sensitive, and its 
magnitude response changes significantly, for both 3-bit and 4-bit word-lengths. The pass-
band expands while the attenuation in the stop-bands decreases. Hence, the low-sensitivity 
structure LS1b is a better choice for applications involving analytic signal processing.  

 
2.3. Low-Sensitivity Orthogonal Complex Second-Order IIR Filter Sections 
In the odd-order cascade filter structures there is one first-order section, the rest being 
second-order. These sections may have higher sensitivity than the first-order sections and 
can be more seriously affected by parasitic effects - the limit cycles and quantization noises 
can completely disrupt the filtering process. This is why the second-order filter sections are 
better investigated and a large number of sections already exists. 
A very low-sensitivity second-order orthogonal complex filter section, named LS2, is 
derived and comparatively investigated (Stoyanov et. al., 1997), (Stoyanov et al., 1996). This 
structure, obtained after the Watanabe-Nishihara circuit transformation is applied to the LS2 
real filter-prototype (Fig. 9a), is shown in Fig. 9b. All the transfer functions of the LS2 
orthogonal section are of BP type except for (28), which are BS. 
The orthogonal complex LS2 filter section is compared with two other often-studied second-
order orthogonal complex sections: DF-section (Direct Form) (Eswaran et al., 1991) and MN-
section (Minimum Norm) (Nie et al., 1993). Both real filter-prototypes and orthogonal 
complex filters are investigated, when realizing the same poles of the transfer function, in 
(Stoyanov et. al., 1997), (Stoyanov et al., 1996). 
In Fig. 10a the worst-case gain-sensitivities for the real prototypes are depicted. The results 
convincingly show that the sensitivity of the LS2 real filter section is thousands of times 
lower than the sensitivity of the other two real sections. The LS2 section is canonic with 
respect to the multipliers but a higher number of adders is the price for its very low 
sensitivity.  
In Fig. 10b the worst-case gain-sensitivities of the BP transfer functions when real input and 
real output are used for the three orthogonal structures are shown. It is clearly seen that the 
LS2 orthogonal section has a tenfold lower sensitivity compared to the MN and DF 
orthogonal structures, while using more than three times fewer multipliers. The same 
results were also obtained for the other transfer functions (Stoyanov et. al., 1997). 
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Fig. 9. Orthogonal complex LS2 second-order filter section derivation. 
 
It is clear from Fig. 10a and 10b that the orthogonal structures inherit the sensitivity of their 
real filter-prototypes and that the shapes of the worst-case sensitivity curves are transferred 
from the prototypes to the orthogonal structures, becoming symmetric around the 
frequency  s/4. 

 

  
(a) (b) 

Fig. 10. Worst-case sensitivities for the DF, MN and LS2 filters (a) real –prototypes (LP 
outputs); (b) orthogonal structures for real input – real output BP transfer functions. 
 
The effect of the coefficient quantization on the magnitude responses is experimentally 
investigated and some of the results for the three orthogonal structures are shown in Fig. 11. 

  
(a) 

  
(b) 



Complex Coefficient IIR Digital Filters 221

 

a b 

z-1 z-1 

+

+

+

+

+ 

+ 

+ 

+ 

input 

LP output HP output 

0,5 

 
(a) 

 
    21

21

2 1221
215,0









zbzab

zzаzH LP
LS    (24) 

    
    21

21

2 1221
2125,0









zbzab

zzbazH HP
LS     (25) 

 

BR

z-1 

z-1 
BIAI 

AR 

BR 
HReal(z) 

HReal(z) 

z-1 AR 

BI AI z-1 

 

  
 
 
 

11   jzz

 

a b 

z-1 z-1 

+

+

+

+ 

+ 

+ 

input R 

+

+

z-1 z-1 ++ 

a b ++ 

++ 

+

+

0,5 

0,5 

input I 

output R2

output I1

output R1 

output I2

 
(b) 

     
   

       4222

42
2

1
2

1
2

112221
163415,0














zbzbba
zbzbaa

zHzHzH R
LPLS

II
LPLS

RR
LPLS

    (26) 

     
    

       4222

21
2

1
2

1
2

112221
432245,0














zbzbba
zbabaaz

zHzHzH I
LPLS

RI
LPLS

RI
LPLS

     (27) 

     
      

       4222

42
2

2
2

2
2

112221
142125,0














zbzbba
zbzbaba

zHzHzH R
HPLS

II
HPLS

RR
HPLS

      (28) 

     
      
       4222

12
2

2
2

2
2

112221
2225,0














zbzbba
zzbababa

zHzHzH I
HPLS

RI
HPLS

RI
HPLS

      (29) 

Fig. 9. Orthogonal complex LS2 second-order filter section derivation. 
 
It is clear from Fig. 10a and 10b that the orthogonal structures inherit the sensitivity of their 
real filter-prototypes and that the shapes of the worst-case sensitivity curves are transferred 
from the prototypes to the orthogonal structures, becoming symmetric around the 
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Fig. 10. Worst-case sensitivities for the DF, MN and LS2 filters (a) real –prototypes (LP 
outputs); (b) orthogonal structures for real input – real output BP transfer functions. 
 
The effect of the coefficient quantization on the magnitude responses is experimentally 
investigated and some of the results for the three orthogonal structures are shown in Fig. 11. 
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(c) 

Fig. 11. Magnitude responses of the second-order orthogonal filter sections for different 
word-lengths (a) DF; (b) MN; (c) LS2. 
 
It can be seen that the LS2 orthogonal structure has a magnitude response almost coinciding 
with the ideal one, even when the word-length is reduced to only 3 bits (Fig. 11c), whilst the 
DF-structure magnitude response is considerably changed when the word-length is 4 bits 
and deteriorates completely when the quantization is 3 bits (Fig. 11a). Similar behaviour is 
observed also in the MN-orthogonal filter section (Fig. 11b). 
The low-sensitivity orthogonal complex first- and second-order sections presented in this 
section can be used as building blocks for a higher order cascade digital filter design. Their 
low sensitivities also ensure the low sensitivity of the cascade filter structure. Low 
sensitivity reduces the effect of the possible mismatch between the real and imaginary 
channels of the complex filter, which may have a crucial effect on the circuit performance. 
Low-sensitivity orthogonal sections are very useful in analytic signal processing applica-
tions, permitting a considerable reduction in both the complexity and cost of the equipment.  

 
3. Variable Complex IIR Digital Filters 

3.1 Overview 
Variable digital filters (VDF) with independently tunable central frequency c and 
bandwidth (BW) are needed for many applications such as digital audio and video 
processing, medical electronics, radar systems, wireless communications etc. An overview 
of all the main approaches to the designed structures of FIR and IIR digital filters is set out 
in (Stoyanov & Kawamata, 1997).  
Complex coefficient VDFs provide additional advantages in processing both real and 
complex signals, which are frequently encountered in telecommunications.  
Real and complex VDFs are usually designed by employing the all-pass Constantinides 
transformations, consisting of the replacement of all delay elements in the LP filter-
prototype with different all-pass sections. However, when the prototype is of IIR type it is 
difficult to avoid producing delay-free loops. The best-known method partly solving the 
problem is that of Mitra, Nevuvo and Roivainen (MNR-method) (Mitra et al., 1990-b), based 
on parallel all-pass real or complex structures and employing truncated Taylor series 
expansions of the filter coefficients to calculate them after the all-pass transformations. The 

 

method is good for real digital filters but in the case of complex filters there are two series 
truncations and, as a result, a tuning of the BW without degradation of the magnitude 
characteristics is possible only over a very narrow frequency band. The other main 
disadvantage of the method is the high stop-band sensitivity, which causes additional 
degradation of the filter characteristics. There is yet another approach (Murakoshi et al., 1994), 
based on a circuit transformation proposed in (Watanabe & Nishihara, 1991), which is able to 
turn any real circuit into a complex one. Using some new transformations, variable complex 
BP/BS filters with tunable BW, but with one cut-off frequency remaining fixed, are obtained. 
The variable BP filter in (Murakoshi et al., 1994) employs too many elements and there are 
limitations in respect of the BW and requirements for fixing one of the pass-band edges.  
This section examines a method of designing complex variable filters with independently 
tunable central frequency and BW, which has a wider range of tuning of the BW and lower 
stop-band sensitivity than those in (Mitra et al., 1990-b) and reduced complexity and higher 
freedom of tuning compared to those in (Murakoshi et al., 1994). 

 
3.2 Variable Complex Filter Design Procedure Outline 
For any given specifications or more general requirements for the desired complex BP or BS 
filter, the design procedure consists of the following steps (Stoyanov & Nikolova, 1999):  

1. Shift the given BP or BS arithmetically symmetric magnitude specifications along the 
frequency axes until the zero frequency coincides with the central frequency c of the 
specifications, thus turning them into LP or HP type.  

2. Apply any possible approximation - classical or more general. As a result an LP or HP 
real coefficient transfer function is obtained. 

3. Factor the transfer function to second-order (and possibly one first-order) terms and 
design the corresponding LP/HP first and second-order filter sections. For each section apply 
the Constantinides LP to LP spectral transformation: 
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This produces a composite multiplier coefficient ̂  that is a function of  and makes the 

BW variable.  
4. Expand the composite multipliers ̂  into Taylor series and take only the linear terms, 

thereby ensuring that the BW variable real LP / HP digital filters will not contain delay-free 
loops. 

5. Using complex transformation (2)    sincos111 jzezz j  or the circuit 
transformation (Watanabe & Nishihara, 1991) applied to the designed real filter sections, 
obtain the complex coefficient structures with variable central frequency c changed 
independently of  .  
The proposed design procedure produces no delay-free loops, even if only one Taylor series 
truncation is used. The method permits the design of BP/BS filters of any even order and 
any possible approximation can be applied. It is also free from BW limitations and from the 
requirement to fix some of the pass-band edge frequencies encountered in some other 
design methods.  
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Fig. 11. Magnitude responses of the second-order orthogonal filter sections for different 
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This produces a composite multiplier coefficient ̂  that is a function of  and makes the 

BW variable.  
4. Expand the composite multipliers ̂  into Taylor series and take only the linear terms, 

thereby ensuring that the BW variable real LP / HP digital filters will not contain delay-free 
loops. 
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requirement to fix some of the pass-band edge frequencies encountered in some other 
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3.3 High Tuning Accuracy Variable Complex Digital Filters Sections 
The Constantinides LP to LP spectral transformation (30), applied on LS1b universal section’s 
LP (18) and HP (19) real transfer functions, transforms them into BW-variable real transfer 
functions: 
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The composite multiplier ̂  (Fig. 12) is expanded into a Taylor series and only the linear terms 
are taken: 
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The BW can be tuned to some extent by changing  ( <0 - wider BW;  >0 - narrower BW). 
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Fig. 12. Composite multiplier ̂  tuning the BW.  
 
The complex transformation (2) is applied on BW-variable real LP and HP transfer functions 
(31), thus obtaining the complex coefficient transfer functions, variable in regard to the central 
frequency c, tuned by changing . For the variable complex LS1b digital filter structure 
(Fig. 13) the variable transfer functions are:  
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All of these are of BP type except (35), which are of BS type. The variable complex LS1b 
digital filter performance is verified by extensive simulations. Fig. 14 shows how the central 
frequency c of narrowband ( = 0.98) variable complex BP (33) and BS (35) transfer functions 
are tuned by changing . It is obvious that C can be tuned without any limitations over the 
entire frequency range. 
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Fig. 13. Variable complex LS1b digital filter structure. 
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Fig. 14. Magnitude responses of variable BP (a) and BS (b) variable complex LS1b section for 
different values of  and fixed =0. 
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Fig. 15. Magnitude responses of variable BP (a) and BS (b) variable complex LS1b section for 
different values of  and fixed =/3. 
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3.3 High Tuning Accuracy Variable Complex Digital Filters Sections 
The Constantinides LP to LP spectral transformation (30), applied on LS1b universal section’s 
LP (18) and HP (19) real transfer functions, transforms them into BW-variable real transfer 
functions: 
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The composite multiplier ̂  (Fig. 12) is expanded into a Taylor series and only the linear terms 
are taken: 
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Fig. 12. Composite multiplier ̂  tuning the BW.  
 
The complex transformation (2) is applied on BW-variable real LP and HP transfer functions 
(31), thus obtaining the complex coefficient transfer functions, variable in regard to the central 
frequency c, tuned by changing . For the variable complex LS1b digital filter structure 
(Fig. 13) the variable transfer functions are:  
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All of these are of BP type except (35), which are of BS type. The variable complex LS1b 
digital filter performance is verified by extensive simulations. Fig. 14 shows how the central 
frequency c of narrowband ( = 0.98) variable complex BP (33) and BS (35) transfer functions 
are tuned by changing . It is obvious that C can be tuned without any limitations over the 
entire frequency range. 
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Fig. 13. Variable complex LS1b digital filter structure. 
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Fig. 14. Magnitude responses of variable BP (a) and BS (b) variable complex LS1b section for 
different values of  and fixed =0. 
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Fig. 15. Magnitude responses of variable BP (a) and BS (b) variable complex LS1b section for 
different values of  and fixed =/3. 
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In Fig. 15 the tuning of the BW of the same LS1b by changing  is demonstrated. 
 
In Fig. 16 the behaviour of the complex LS1b and MHNS variable digital filters in a limited 
wordlength is compared. It is clear that the characteristics of the MHNS-based complex filter 
are changed considerably after the multiplier coefficients’ truncation to 4 or 3 bits while 
those of the LS1b-based complex filter remain practically unchanged. This is due to the very 
low sensitivity inherited from the LS1b prototype. 
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Fig. 16. Magnitude responses of the variable complex BP LS1b and MHNS for different 
coefficients word-length and BW tuned (=7/10). 
 
The improved design method proposed in this section is also applicable to real second-order 
filter sections – the LS2 (Fig. 9a) and DF (Eswaran et al., 1991). The variable complex LS2 
structure is shown in Fig. 17 and the transfer functions that it realizes are: 
 

   
             

 zD
zbzAbazCAbbazAbaa

zHzH II
НЧLS

RR
НЧLS

432221

1
2

1
2

ˆ1ˆˆ2ˆ22ˆˆ22ˆˆ21
2
ˆ

ˆˆ









 (37) 

 

       
 zD

CzbaACzbCzbaazHzH IR
НЧLS

RI
НЧLS

321
1
2

1
2

4ˆ3ˆ2ˆ2ˆˆ24
2
ˆˆˆ






  (38) 

   
             

 zD
zbzAbazCAbbazAbaB

zHzH II
ВЧLS

RR
ВЧLS

432221

2
2

2
2

ˆ14ˆ3ˆ2ˆ22ˆˆ224ˆˆ21

ˆˆ









 (39) 

       
 zD

CzbaACzbCzbaBzHzH IR
ВЧLS

RI
ВЧLS

321
2
2

2
2

ˆˆ2ˆ2ˆˆ2ˆˆ





  (40) 

 
where A=cos , C=sin ,  baB ˆˆ25,0  , and  
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Composite multipliers â  and b̂  have analytical expressions, analogous to (32). The 
coefficient  changes the central frequency c, while the BW is changed by  (the composite 
multipliers â  and b̂ are functions of ).  
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Fig. 17. Variable complex second-order LS2 digital filter section. 
 
Fig. 18 and Fig. 19 show experimental results in regard to the tuning abilities of the BP (37) 
and BS (39) transfer functions. 
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In Fig. 15 the tuning of the BW of the same LS1b by changing  is demonstrated. 
 
In Fig. 16 the behaviour of the complex LS1b and MHNS variable digital filters in a limited 
wordlength is compared. It is clear that the characteristics of the MHNS-based complex filter 
are changed considerably after the multiplier coefficients’ truncation to 4 or 3 bits while 
those of the LS1b-based complex filter remain practically unchanged. This is due to the very 
low sensitivity inherited from the LS1b prototype. 
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Fig. 16. Magnitude responses of the variable complex BP LS1b and MHNS for different 
coefficients word-length and BW tuned (=7/10). 
 
The improved design method proposed in this section is also applicable to real second-order 
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where A=cos , C=sin ,  baB ˆˆ25,0  , and  
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Composite multipliers â  and b̂  have analytical expressions, analogous to (32). The 
coefficient  changes the central frequency c, while the BW is changed by  (the composite 
multipliers â  and b̂ are functions of ).  
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Fig. 17. Variable complex second-order LS2 digital filter section. 
 
Fig. 18 and Fig. 19 show experimental results in regard to the tuning abilities of the BP (37) 
and BS (39) transfer functions. 
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Fig. 18. Magnitude responses of variable BP (a) and BS (b) complex LS2 section for different 
values of  (central frequency tuning) and fixed =0. 
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Fig. 19. Magnitude responses of variable BP (a) and BS (b) complex LS2 section for different 
values of  (BW tuning) and fixed  =/3. 
 
Variable complex LS2 and DF digital filter structures are compared for different word-
lengths of the coefficients and the experimental results are depicted in Fig. 20. 
The graphics in Fig. 20 show that the low-sensitivity LS2 variable complex section is 
undoubtedly superior to the DF section when the coefficients are quantized. 
The variable complex DF filter does not preserve the magnitude shape either when the BW 
is made wider or when it is narrower. In addition, the DF-attenuation in the pass-band 
increases two-fold for a word-length of 3 bits (Fig. 20b,d) whilst in the LS2 structure it 
remains unchanged throughout the whole frequency range. 
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Fig. 20. Magnitude responses of the variable complex BP LS2 and DF for different 
coefficients word-length and BW tuned (=7/10). 

 
3.4 Design Example and Experiments 
To demonstrate the advantages of the proposed improved method for designing variable 
complex filters, a design example will be displayed (Stoyanov & Nikolova, 1999). Two 
eighth-order variable complex filters will be compared to each other – an LS2-based cascade 
structure and an MNR-method-based all-pass structure (Mitra et. al., 1990-b).  
The required specification is as follows: a variable complex BP filter with pass-band tuned 
from 0.04 to 0.16 (nominal value 0.1), intermediate band 0.06, Rp = 2 dB, Rs = 40 dB and 
central frequency c tuned over the entire frequency range 0  1. Following the procedure 
given in section 3.2, and using a Chebyshev approximation, a fourth-order LP transfer 
function is obtained. It is presented as a cascade realization consisting of two second-order 
terms. Worst-case sensitivities of the LP second-order LS2-based and parallel all-pass 
structure are examined and the results are depicted in Fig. 21. It is obvious that the LS2-
section has about 50 times lower sensitivity in the pass-band than the all-pass structure. On 
the other hand, in the stop-band the parallel all-pass structure shows lower sensitivity.  
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Fig. 18. Magnitude responses of variable BP (a) and BS (b) complex LS2 section for different 
values of  (central frequency tuning) and fixed =0. 
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Fig. 19. Magnitude responses of variable BP (a) and BS (b) complex LS2 section for different 
values of  (BW tuning) and fixed  =/3. 
 
Variable complex LS2 and DF digital filter structures are compared for different word-
lengths of the coefficients and the experimental results are depicted in Fig. 20. 
The graphics in Fig. 20 show that the low-sensitivity LS2 variable complex section is 
undoubtedly superior to the DF section when the coefficients are quantized. 
The variable complex DF filter does not preserve the magnitude shape either when the BW 
is made wider or when it is narrower. In addition, the DF-attenuation in the pass-band 
increases two-fold for a word-length of 3 bits (Fig. 20b,d) whilst in the LS2 structure it 
remains unchanged throughout the whole frequency range. 
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Fig. 20. Magnitude responses of the variable complex BP LS2 and DF for different 
coefficients word-length and BW tuned (=7/10). 

 
3.4 Design Example and Experiments 
To demonstrate the advantages of the proposed improved method for designing variable 
complex filters, a design example will be displayed (Stoyanov & Nikolova, 1999). Two 
eighth-order variable complex filters will be compared to each other – an LS2-based cascade 
structure and an MNR-method-based all-pass structure (Mitra et. al., 1990-b).  
The required specification is as follows: a variable complex BP filter with pass-band tuned 
from 0.04 to 0.16 (nominal value 0.1), intermediate band 0.06, Rp = 2 dB, Rs = 40 dB and 
central frequency c tuned over the entire frequency range 0  1. Following the procedure 
given in section 3.2, and using a Chebyshev approximation, a fourth-order LP transfer 
function is obtained. It is presented as a cascade realization consisting of two second-order 
terms. Worst-case sensitivities of the LP second-order LS2-based and parallel all-pass 
structure are examined and the results are depicted in Fig. 21. It is obvious that the LS2-
section has about 50 times lower sensitivity in the pass-band than the all-pass structure. On 
the other hand, in the stop-band the parallel all-pass structure shows lower sensitivity.  
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Fig. 21. Worst-case sensitivity of second-order LS2 and all-pass real digital filter sections. 
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Fig. 22. Magnitude responses of the variable complex BP eighth-order LS2-based and MNR-
based filters – BW tuning (a,b – for /4) and central frequency tuning (c,d – for =0). 
 
Then, a variable complex filter using two sections identical to the one in Fig. 17 is designed 
and the eighth-order BP filter thus obtained is simulated. The results for the BW tuning are 

 

shown in Fig. 22a, while those for central frequency tuning are in Fig. 22c. Next, a complex 
all-pass sections based variable filter, following the MNR-method, was designed and the 
results from the simulation for the BW and central frequency tuning are shown in Fig. 22b 
and Fig. 22d respectively. It can be seen that, while the BW of the LS2 filter is tuned without 
problem over a frequency range much wider than required, the MNR filter turns from a 
Chebyshev into a kind of elliptic when tuned. The possibilities of tuning in a narrowing 
direction are very limited (tuning after >0.2 is actually impossible) and the shape of the 
magnitude varies strongly during the tuning process. As far as the central frequency tuning 
is concerned, no problems were observed for either filter - as is apparent from Fig. 22c, d. 
The behaviour of both filters in a limited word-length environment is also investigated and 
some results are shown in Fig. 23.  
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Fig. 23. Magnitude responses of the variable complex BP eighth-order LS2-based (a) and 
MNR-based (b) filters for different coefficients word-length (=0.15; /4). 
 
While the LS2-based filter behaves well with 3-bits word-length, the magnitude response of 
the MNR-filter is strongly degraded even with 6-bit words, due to the higher sensitivity of the 
LP-prototype (Fig. 21) and the double usage of Taylor series truncation. Despite the lower 
sensitivity of the real all-pass structure in the stop-band (Fig. 21), the magnitude response of 
the obtained MNR-variable complex filter is completely degraded even for stop-band 
frequencies (Fig. 23b and Fig. 23b). The explanation lies in the imperfection of the MNR-
method with respect to the variable complex filter design.  
The complex coefficient variable BP and BS filters designed using the improved method 
examined in this section have a BW and central frequency which can be independently tuned 
with high accuracy. The possible BW tuning range is wider compared to that of the other 
known methods. The filter sections used have lower sensitivity and thus are less susceptible to 
the inaccuracies due to series truncations. The accuracy of tuning is higher and it is possible to 
use coefficients with a shorter word-length, thereby decreasing the power consumption and 
the volume of computations for both the filtering and updating of the coefficients. Similar 
results are obtained for other efficient IIR digital filter structures based on sensitivity 
minimization design, such as efficient multiplierless realizations and fractional-delay filters 
(Stoyanov et al., 2007). 
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Fig. 22. Magnitude responses of the variable complex BP eighth-order LS2-based and MNR-
based filters – BW tuning (a,b – for /4) and central frequency tuning (c,d – for =0). 
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and the eighth-order BP filter thus obtained is simulated. The results for the BW tuning are 

 

shown in Fig. 22a, while those for central frequency tuning are in Fig. 22c. Next, a complex 
all-pass sections based variable filter, following the MNR-method, was designed and the 
results from the simulation for the BW and central frequency tuning are shown in Fig. 22b 
and Fig. 22d respectively. It can be seen that, while the BW of the LS2 filter is tuned without 
problem over a frequency range much wider than required, the MNR filter turns from a 
Chebyshev into a kind of elliptic when tuned. The possibilities of tuning in a narrowing 
direction are very limited (tuning after >0.2 is actually impossible) and the shape of the 
magnitude varies strongly during the tuning process. As far as the central frequency tuning 
is concerned, no problems were observed for either filter - as is apparent from Fig. 22c, d. 
The behaviour of both filters in a limited word-length environment is also investigated and 
some results are shown in Fig. 23.  
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Fig. 23. Magnitude responses of the variable complex BP eighth-order LS2-based (a) and 
MNR-based (b) filters for different coefficients word-length (=0.15; /4). 
 
While the LS2-based filter behaves well with 3-bits word-length, the magnitude response of 
the MNR-filter is strongly degraded even with 6-bit words, due to the higher sensitivity of the 
LP-prototype (Fig. 21) and the double usage of Taylor series truncation. Despite the lower 
sensitivity of the real all-pass structure in the stop-band (Fig. 21), the magnitude response of 
the obtained MNR-variable complex filter is completely degraded even for stop-band 
frequencies (Fig. 23b and Fig. 23b). The explanation lies in the imperfection of the MNR-
method with respect to the variable complex filter design.  
The complex coefficient variable BP and BS filters designed using the improved method 
examined in this section have a BW and central frequency which can be independently tuned 
with high accuracy. The possible BW tuning range is wider compared to that of the other 
known methods. The filter sections used have lower sensitivity and thus are less susceptible to 
the inaccuracies due to series truncations. The accuracy of tuning is higher and it is possible to 
use coefficients with a shorter word-length, thereby decreasing the power consumption and 
the volume of computations for both the filtering and updating of the coefficients. Similar 
results are obtained for other efficient IIR digital filter structures based on sensitivity 
minimization design, such as efficient multiplierless realizations and fractional-delay filters 
(Stoyanov et al., 2007). 
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4. Adaptive Complex Systems 

4.1 Outline and Applications 
FIR digital filter structures are usually preferred as the building blocks in adaptive systems, 
including complex ones, due to their absolute stability; however the use of IIR filters is 
increasing, owing to their definite advantages. A number of IIR adaptive complex filters 
were put forward as possible solutions to the problems typically encountered in many 
telecommunications applications dealing with the detection, tracking and suppression / 
elimination of complex signals embedded in noise. Wideband wireless communication 
systems are very sensitive to narrowband interference (NBI), which can even prevent the 
system operating (Giorgetti et al., 2005). For NBI suppression in quadrature phase shift 
keying (QPSK) spread-spectrum communication systems, an adaptive complex notch filter 
is used (Jiang et al., 2002).  
Discrete multi-tone (DMT) modulation systems, such as DMT VDSL, are very sensitive to 
radio-frequency interference (RFI) and RFI-suppression has been discussed in many works, 
such as (Starr et al., 2003) (Yaohui et al., 2001). OFDM is the other leading technology for 
many broadband communication systems, such as MB-OFDM ultra wideband systems 
(UWB). As a result of NBI, signal-to-interference ratio (SIR) dropping can seriously degrade 
the characteristics of these systems (Carlemalm et al., 2004). 
The problem of interference is encountered in various kinds of broadband telecommunica-
tions systems but the methods for interference suppression proposed so far can be broadly 
categorized into two approaches. The first concerns various frequency excision methods, 
whilst the second relates to so-called cancellation techniques. These techniques aim to 
eliminate or reduce interference in the received signal by the use of adaptive notch filtering-
based methods or NBI identification (Baccareli et al., 2002). 
This section deals with adaptive complex filtering as a noise-cancellation method associated with 
analytic signals and complex NBI suppression. An adaptive complex system is developed, based 
on the very low-sensitivity variable complex filters studied in section 3. The quality of adaptive 
filtering is influenced by two major factors – the efficiency and convergence of the adaptive 
algorithm, and the properties of the adaptive structure. Most research studies barely consider the 
details of adaptive filter realizations and their properties, although a lot has been done to 
improve the adaptive algorithms. The efficiency of adaptive complex filter sections and their 
beneficial properties considerably influence the adaptive process. 

 
4.2 Adaptive Complex Systems Design 
In Fig. 24 a block-diagram of an adaptive complex system is shown (Iliev et al., 2004).  
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Fig. 24. Block-diagram of a BP/BS adaptive complex filter section. 

 

The adaptive complex system design starts with a description of input-output equations. 
The BP/BS variable complex LS1b-based filter is considered and its BP real output is as 
follows: 
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The imaginary output is given by the following equation: 
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For the BS variable complex LS1b filter there is a real output: 
 
 )()()( nynxne RRR  , (47) 
and an imaginary output: 
 )()()( nynxne III  . (48) 
 
The cost-function is the power of BS filter output signal: 
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At this stage an adaptive algorithm should be applied and the Least Mean Squares (LMS) 
algorithm is chosen since it combines low computational complexity and relatively fast 
adaptation rate. The LMS algorithm updates the filter coefficient responsible for the central 
frequency as follows: 
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algorithm, and the properties of the adaptive structure. Most research studies barely consider the 
details of adaptive filter realizations and their properties, although a lot has been done to 
improve the adaptive algorithms. The efficiency of adaptive complex filter sections and their 
beneficial properties considerably influence the adaptive process. 
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In Fig. 24 a block-diagram of an adaptive complex system is shown (Iliev et al., 2004).  
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Fig. 24. Block-diagram of a BP/BS adaptive complex filter section. 

 

The adaptive complex system design starts with a description of input-output equations. 
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The imaginary output is given by the following equation: 
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For the BS variable complex LS1b filter there is a real output: 
 
 )()()( nynxne RRR  , (47) 
and an imaginary output: 
 )()()( nynxne III  . (48) 
 
The cost-function is the power of BS filter output signal: 
 
 )]()([ nene  , (49) 
where 
 )()()( njenene IR  . (50) 
 
At this stage an adaptive algorithm should be applied and the Least Mean Squares (LMS) 
algorithm is chosen since it combines low computational complexity and relatively fast 
adaptation rate. The LMS algorithm updates the filter coefficient responsible for the central 
frequency as follows: 
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where  is the step-size controlling the speed of convergence, (*) denotes complex-conjugate, 
y(n) is a derivative of )()()( njynyny IR   with respect to the coefficient that is the subject 
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The adaptive process for the BP/BS variable complex second-order LS2-based filter can be 
similarly defined (Iliev et al., 2006). 
In order to ensure the stability of the adaptive algorithm, the range of the step size µ should 
be set according to (Douglas, 1999): 

 20



N
P . (54) 

 
In this case N is the filter order, σ2 is the power of the signal y(n) and P is a constant which 
depends on the statistical characteristics of the input signal. In most practical situations P is 
approximately equal to 0.1. 

 
4.3 Adaptive Complex Filtering Investigations 
The good performance of low-sensitivity complex filters in finite word-length environments 
and their low coefficient sensitivities significantly improve the quality of the adaptive 
filtering process and this will be experimentally confirmed. The narrowband low-sensitivity 
adaptive complex filters are examined for elimination / enhancement of narrowband 
complex signals. By changing the transformation factor  , the central frequency c of the 
complex filter can be tuned over the entire frequency range adaptively. The accuracy of 
tuning is very high and it is possible to use coefficients with shorter word-length, thus 
decreasing the power consumption for both the adaptive filtering and the updating of the 
coefficients. The convergence of the adaptive algorithm for the developed low-sensitivity 
variable complex filters is investigated experimentally and the efficiency of the adaptation is 
demonstrated. 
The experiments are conducted in three basic set-ups. First, we test the convergence speed 
of the adaptive complex filter sections with respect to different values of step size . In 
Fig. 25 the learning curves of this adaptation are shown. The input signal is a mixture of 
white noise and complex (analytic) sinusoid with frequency f = 0.25. It can be observed that 
as the step-size increases a higher speed of adaptation is achieved. It obvious that the 
adaptive complex filter based on LS2 reaches steady state in the case of =0.005 after about 
100 iterations (Fig. 25b), which is considerably less than the number of iterations needed for 
the filter based on LS1b (approximately 2000, Fig. 25a). 

 

  
(a) (b) 

Fig. 25. Trajectories of the coefficient θ for different step size μ for the (a) LS1b-based;  
(b) LS2-based complex filter section. 
 
In Fig. 26 results for different filter BW are presented. It is clear that narrowing the filter BW 
slows the process of convergence. It should be mentioned that if some other (non low-
sensitivity) adaptive complex sections were to be used, the coefficient β could not take 
values smaller than -0.1 without destroying the magnitude shape. Thus a faster convergence 
of the adaptive filtering can be obtained because of the wider BW. Comparing LS1b and LS2 
realizations it can be concluded that, for the same BW, the LS2 filter converges 5 times faster. 
 

  
(a) (b) 

Fig. 26. Trajectories of the coefficient θ for different BW β for the (a) LS1b-based;  
(b) LS2-based complex filter section. 
 
Finally, Fig. 27 shows the behaviour of LS1b and LS2 filters for a wide range of frequencies. 
In all cases the low-sensitivity filter structures converge to the proper frequency value. 
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Fig. 27. Trajectories of the coefficient θ for different frequency f for the (a) LS1b-based;  
(b) LS2-based complex filter section. 

 
4.4 Adaptive Complex Filters Applications 
The first- and second-order low-sensitivity adaptive complex filter sections examined in this 
section are suitable for both independent use and as building blocks for the higher order 
cascade or parallel realizations needed in many telecommunications applications.  
Adaptive complex narrowband filtering is used for noise cancellation in an OFDM 
transmission scheme and shows that better SNR and bit-error rate (BER) performance can be 
achieved (Iliev et al., 2006). Another application of low-sensitivity narrowband adaptive 
complex filtering is NBI cancellation in MB-OFDM systems (Nikolova et al., 2006), multi-
inputs multi-outputs (MIMO) OFDM systems (Iliev et al., 2009), and DMT VDSL systems 
(Ovtcharov et al., 2009-a). An advantage of the proposed scheme is that the adaptive 
complex system is universal, realizing BP and BS outputs simultaneously. Besides being 
suppressed, the NBI can also be monitored and the adaptive complex system can be 
deactivated when the interference disappears or is reduced to an acceptable level. In (Iliev et 
al., 2010) a method is proposed for NBI suppression in MIMO MB-OFDM UWB communica-
tion systems, using adaptive complex narrowband filtering based on the LS1b variable 
complex section. A comparative study shows that the NBI method is an optimal solution 
that offers a trade-off between outstanding NBI suppression efficiency and computational 
complexity. Various problems with OFDM systems and their possible solutions are 
summarized in (Nikolova et al., 2009); adaptive complex filtering is one of the most efficient 
methods for noise suppression in these systems (Nikolova et al., 2010). Adaptive complex 
filtering is an accurate and robust approach for RFI suppression in UWB communication 
systems (Ovtcharov et al., 2009-b) and GDSL MIMO systems (Poulkov et al., 2009).  

 
5. Conclusions 

Complex coefficient digital filters are used in many DSP applications relating to complex 
signal representations. Orthogonal signals occur often in different telecommunications 
applications and can be effectively processed by a special class of complex filters, the so-
called orthogonal complex filters. A method for designing these filters is examined in this 
chapter and first- and second-order IIR orthogonal complex sections are synthesized. They 

 

can be used as filter sections for designing cascade structures and also as single filter 
structures. The derived orthogonal sections are canonic very low-sensitivity structures 
which permit the use of a very short coefficient word-length, leading to higher accuracy, 
lower power consumption and simple implementation.  
An improved method for designing variable complex filters is proposed. It is possible to use 
any classical or more general approximation, producing transfer function of any even order. 
The structures avoid delay-free loops and have a canonical number of elements. The 
variable complex filters designed with the improved method have central frequency and 
BW that are tuned independently and very accurately over a wide frequency range. Very 
narrowband BP/BS structures can be developed, such as the low-sensitivity LS1b and LS2 
variable complex sections. Compared to other often-used methods they show higher 
freedom of tuning, reduced complexity and lower stop-band sensitivity.  
A BP/BS adaptive complex system is developed based on the derived narrowband LS1b 
and LS2 variable complex filters, and the simple but efficient LMS adaptive algorithm. Both 
low-sensitivity adaptive complex sections are examined for suppression/enhancement of 
narrowband complex signals. They demonstrate excellent abilities and are appropriate to be 
applied in a number of telecommunications systems where the problem of eliminating 
complex noise, RFI or NBI exists.  
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(b) LS2-based complex filter section. 
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1. Introduction

In many digital filter implementations the filter coefficients are known beforehand. Based on
this fact, the problem of constant multiplications, replacing general multipliers with shifts and
adders1, has been an active research topic for a few decades. Much work has been done on
finding algorithms and filter coefficients where the filter coefficients can be represented using
few signed-power-of-two (SPT) terms (Lim, 1990; Yli-Kaakinen & Saramäki, 2007). Further-
more, there has been work on realizing constant multipliers using few adders (Dempster &
Macleod, 1994; Gustafsson et al., 2006; Thong & Nicolici, 2009). Additionally, mainly moti-
vated by transposed direct form FIR filters, as shown in Fig. 1, several algorithms have been
proposed for utilizing redundancies when a single data is multiplied with several constant co-
efficients, known as multiple constant multiplication (Aksoy et al., 2010; Dempster & Macleod,
1995; Gustafsson, 2007; Hartley, 1996; Potkonjak et al., 1996; Voronenko & Püschel, 2007).
Most of this previous work has considered carry-propagation adders (CPAs), i.e., adders with
two inputs and one output, as shown in Fig. 2. Even though there has been many different
techniques proposed to accelerate the carry-propagation, these typically lead to an increased
area and power consumption. For high-speed implementations, an alternative is to use carry-
save adders (CSAs). These adders do not propagate the carry, but instead have two outputs,
one for the sum and one for the carry. Furthermore, as no carries are propagated, the adder
can use the carry-input as a third input. A carry-save adder is illustrated in Fig. 3.
The mapping between CPAs and CSAs is not consistent (Gustafsson, 2008). Hence, there is
a need to solve the CSA constant multiplications using specialized algorithms. The inconsis-
tency is illustrated in Fig. 4, where a multiple constant multiplication for the coefficients 3, 11,

Fig. 1. Transposed direct form FIR filter.

1 Adders refers to both adders and subtractors.
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Fig. 2. Carry-propagation adder.

Fig. 3. Carry-save adder.

and 27 is shown. In Fig. 4, << n denotes a left-shift by n, i.e., a multiplication by 2n. The CPA
solution in Fig. 4(a) is optimal in terms of adders. However, when the three CPAs are mapped
to CSAs, as shown in Fig. 4(b) it is clear that a CPA can result in zero, one, or two CSAs. The
different cases are summarized in Table 1.
In this chapter we consider the realization of constant multiplications using CSAs. Primarily,
we will consider the case where the input is in non-redundant format, typically two’s com-
plement, and the output is in carry-save format. In most application one would eventually
convert the carry-save format back to non-redundant form using a CPA. However, it should
be noted that it is possible to use CSAs throughout the application and that stability can be
retained in wave digital filters (Kleine & Noll, 1987). As such we also consider single constant
multiplication with carry-save input. In general, it is possible to use algorithms for CPAs as
one CPA results in two CSAs when both inputs are in carry-save format, see Table 1. How-
ever, the number of cascaded adders does not follow directly, as the CSAs can be arranged
in different structures. The work presented in this chapter originates from (Gustafsson et al.,
2004; 2001; Gustafsson & Wanhammar, 2007). Related work has later on been presented in
(Aksoy & Güneş, 2008; Hosangadi et al., 2006; Jaccottet et al., 2010).

2. Carry-Save Arithmetic

A carry-save adder as that in Fig. 3 can add three two’s complement numbers and produce
the result as two two’s complement numbers, where the sum of the two outputs is the sum of
the three inputs. The weights of the carry-bits are one higher than those of the sum-bits. This
leads to two things: the least significant carry-bit is always zero and the MSB of the sum and

CPA input 1 CPA input 2 Number of CSAs
multiplier input multiplier input 0
multiplier input adder output 1

adder output adder output 2
Table 1. Possible cases of mapping a CPA to CSA.

(a) (b)

Fig. 4. Multiple constant multiplication for {3, 11, 27}. (a) Optimal CPA solution. (b) Mapped
CSA solution.

carry have different weights. The latter causes problems when adding these in later stages as
all two’s complement vectors should have the same length for addition to work.

2.1 Subtraction in carry-save arithmetic
To subtract a two’s complement number using CPAs, the standard way is to negate the num-
ber to be subtracted and add a one to the carry-input of the least significant full adder, indi-
cated by cin in Fig. 2. However, for a carry-save adder there is no such “free” input. Instead
one can utilize the least significant carry-bit and set that to one in case of a subtraction. This
clearly only works if one of the three inputs should be subtracted. For cases where two inputs
should be subtracted it is often possible to change the sign of the output such that the initially
positive term is now subtracted. This will be further illustrated in the example in Section 3.2.

2.2 Handling of sign-bits in carry-save arithmetic
Consider the addition of the three numbers 0, 0.5, and −0.5 in two’s complement representa-
tion with a CSA as shown in Fig. 3. The inputs, {A, B, D}, and outputs, {C, S} are

A 0.0 0.010
B 0.1 0.510
D 1.1 −0.510
C 01.
S 1.0

Now, as the result, 0, is within the valid range of the number representation used we can
without any problems remove the leading carry bit and obtain the result in a carry save repre-
sentation as C = 1.0, S = 1.0. Adding these gives the expected result C + S = 0.0 = 010, after
removing the carry out of the carry propagation addition. However, now shift the results right
one position to obtain C = 1.10, S = 1.10. If we add these vectors we get C + S = 1.00 = −110.
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Fig. 2. Carry-propagation adder.

Fig. 3. Carry-save adder.
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solution in Fig. 4(a) is optimal in terms of adders. However, when the three CPAs are mapped
to CSAs, as shown in Fig. 4(b) it is clear that a CPA can result in zero, one, or two CSAs. The
different cases are summarized in Table 1.
In this chapter we consider the realization of constant multiplications using CSAs. Primarily,
we will consider the case where the input is in non-redundant format, typically two’s com-
plement, and the output is in carry-save format. In most application one would eventually
convert the carry-save format back to non-redundant form using a CPA. However, it should
be noted that it is possible to use CSAs throughout the application and that stability can be
retained in wave digital filters (Kleine & Noll, 1987). As such we also consider single constant
multiplication with carry-save input. In general, it is possible to use algorithms for CPAs as
one CPA results in two CSAs when both inputs are in carry-save format, see Table 1. How-
ever, the number of cascaded adders does not follow directly, as the CSAs can be arranged
in different structures. The work presented in this chapter originates from (Gustafsson et al.,
2004; 2001; Gustafsson & Wanhammar, 2007). Related work has later on been presented in
(Aksoy & Güneş, 2008; Hosangadi et al., 2006; Jaccottet et al., 2010).

2. Carry-Save Arithmetic

A carry-save adder as that in Fig. 3 can add three two’s complement numbers and produce
the result as two two’s complement numbers, where the sum of the two outputs is the sum of
the three inputs. The weights of the carry-bits are one higher than those of the sum-bits. This
leads to two things: the least significant carry-bit is always zero and the MSB of the sum and

CPA input 1 CPA input 2 Number of CSAs
multiplier input multiplier input 0
multiplier input adder output 1

adder output adder output 2
Table 1. Possible cases of mapping a CPA to CSA.
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Fig. 4. Multiple constant multiplication for {3, 11, 27}. (a) Optimal CPA solution. (b) Mapped
CSA solution.

carry have different weights. The latter causes problems when adding these in later stages as
all two’s complement vectors should have the same length for addition to work.

2.1 Subtraction in carry-save arithmetic
To subtract a two’s complement number using CPAs, the standard way is to negate the num-
ber to be subtracted and add a one to the carry-input of the least significant full adder, indi-
cated by cin in Fig. 2. However, for a carry-save adder there is no such “free” input. Instead
one can utilize the least significant carry-bit and set that to one in case of a subtraction. This
clearly only works if one of the three inputs should be subtracted. For cases where two inputs
should be subtracted it is often possible to change the sign of the output such that the initially
positive term is now subtracted. This will be further illustrated in the example in Section 3.2.

2.2 Handling of sign-bits in carry-save arithmetic
Consider the addition of the three numbers 0, 0.5, and −0.5 in two’s complement representa-
tion with a CSA as shown in Fig. 3. The inputs, {A, B, D}, and outputs, {C, S} are

A 0.0 0.010
B 0.1 0.510
D 1.1 −0.510
C 01.
S 1.0

Now, as the result, 0, is within the valid range of the number representation used we can
without any problems remove the leading carry bit and obtain the result in a carry save repre-
sentation as C = 1.0, S = 1.0. Adding these gives the expected result C + S = 0.0 = 010, after
removing the carry out of the carry propagation addition. However, now shift the results right
one position to obtain C = 1.10, S = 1.10. If we add these vectors we get C + S = 1.00 = −110.
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Fig. 5. Graph representation of the shift-and-add network in Fig. 4(b). The graph is directed
from left to right.

Obviously, we can not straightforwardly shift the carry and the sum vector after a carry-
save addition, despite the fact that they are both in two’s complement representation and
the shifted result for each vector separately is correct.
Shifting of carry-save data is crucial in the realization of CSA-based constant multiplication,
and, hence, a shiftable representation is required.
In (Noll, 1991) this erroneous behavior was named carry overflow. A solution for a single CSA
was proposed as replacing the most significant carry and sum bits with

c′0 = cout (1)

s′0 = s0 ⊕ c0 ⊕ cout (2)

where c′0 and s′0 are the corrected sign-bits. For the simple example above we would obtain the
corrected vectors C = 0.0, S = 0.0 which clearly can be shifted arbitrarily and still resulting in
a correct sum.
For the general case that we have two vectors C and S and want to truncate them to a given
number of bits the sign-bits can be computed as

c′i = ci ⊕ ci+1 ⊕ si+1 (3)

s′i = si ⊕ ci+1 ⊕ si+1 (4)

Hence, it is possible to add an arbitrary number of words using only one guard bit and obtain
a valid two’s complement representation with correct sign-bits that can be shifted arbitrarily,
given that we know that the final result is within the given range.
An alternative technique is of course to sign-extend the sum-output. However, this would
lead to an increasing wordlength compared to the corresponding non-redundant wordlength.
Furthermore, that approach can not be used in recursive algorithms.

3. Carry-Save Arithmetic Constant Multipliers with Non-Redundant Input

It is in many cased practical to represent the shift-and-add networks as graphs, where the
edges corresponds to shifts and the vertices corresponds to additions. Typically, the sign of
the operation is represented on the edges. As an example, the network in Fig. 4(b) has a
graph-representation as in Fig. 5, where the thin lines correspond to data in non-redundant
format, while the bold lines corresponds to data in carry-save format. Each node has a value,
called a fundamental, which is the ratio between the output of the adder and the input, i.e., the
multiplier coefficient. The fundamentals are indicated with a bold font. The adder graphs are
directed. However, for clarity, the arrows are neglected.
It is possible to define graphs corresponding to all possible interconnections of N adders. They
have the following properties (Gustafsson & Wanhammar, 2007):

• Each edge can either be in non-redundant or in carry-save representation.
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Fig. 6. Possible carry-save adder graphs with non-redundant input generating different coef-
ficient sets for 0 to 6 carry-save adders. The graphs are directed from left to right.

• The cost of a vertex is the number of incoming edges corresponding to non-redundant
words plus two times the number of incoming edges corresponding to carry-save words
minus two.

• The output edge(s) of a vertex is in carry-save representation, except for the initial ver-
tex.

All possible combinations of edge values for the given graphs can be searched and the
minimum-adder solution can easily be found. In Fig. 6 all possible graphs generating dif-
ferent sets of coefficients using up to six carry-save adders is shown. As in Fig. 5 the thin
lines represent data in a non-redundant format, while the bold lines represent carry-save for-
mat. Note that cost-0 graph 1 has a non-redundant output. The first graphs for each nonzero
cost corresponds to the CSD multiplier. Hence, this case is always covered by the proposed
approach.
It is worth noting that when four or more carry-save adders are required in a vertex it is
possible to re-arrange the adders into, e.g., a Wallace tree (Wallace, 1964). This will reduce the
adder depth of the multiplier.

3.1 Results
Exhaustive searches have been performed for multipliers containing up to six adders. This has
been done by searching all different combinations of possible shifts and signs for all graphs
up to six adders and saving the minimum number of adders in a table. The result is that all
integer numbers between 1 and 2k for wordlength k up to 19 can be obtained using six adders.
The maximum number of adders required for a given wordlength is shown in Fig. 7 for both
CSD multipliers and the proposed approach.
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from left to right.

Obviously, we can not straightforwardly shift the carry and the sum vector after a carry-
save addition, despite the fact that they are both in two’s complement representation and
the shifted result for each vector separately is correct.
Shifting of carry-save data is crucial in the realization of CSA-based constant multiplication,
and, hence, a shiftable representation is required.
In (Noll, 1991) this erroneous behavior was named carry overflow. A solution for a single CSA
was proposed as replacing the most significant carry and sum bits with

c′0 = cout (1)

s′0 = s0 ⊕ c0 ⊕ cout (2)

where c′0 and s′0 are the corrected sign-bits. For the simple example above we would obtain the
corrected vectors C = 0.0, S = 0.0 which clearly can be shifted arbitrarily and still resulting in
a correct sum.
For the general case that we have two vectors C and S and want to truncate them to a given
number of bits the sign-bits can be computed as

c′i = ci ⊕ ci+1 ⊕ si+1 (3)

s′i = si ⊕ ci+1 ⊕ si+1 (4)

Hence, it is possible to add an arbitrary number of words using only one guard bit and obtain
a valid two’s complement representation with correct sign-bits that can be shifted arbitrarily,
given that we know that the final result is within the given range.
An alternative technique is of course to sign-extend the sum-output. However, this would
lead to an increasing wordlength compared to the corresponding non-redundant wordlength.
Furthermore, that approach can not be used in recursive algorithms.

3. Carry-Save Arithmetic Constant Multipliers with Non-Redundant Input

It is in many cased practical to represent the shift-and-add networks as graphs, where the
edges corresponds to shifts and the vertices corresponds to additions. Typically, the sign of
the operation is represented on the edges. As an example, the network in Fig. 4(b) has a
graph-representation as in Fig. 5, where the thin lines correspond to data in non-redundant
format, while the bold lines corresponds to data in carry-save format. Each node has a value,
called a fundamental, which is the ratio between the output of the adder and the input, i.e., the
multiplier coefficient. The fundamentals are indicated with a bold font. The adder graphs are
directed. However, for clarity, the arrows are neglected.
It is possible to define graphs corresponding to all possible interconnections of N adders. They
have the following properties (Gustafsson & Wanhammar, 2007):

• Each edge can either be in non-redundant or in carry-save representation.
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Fig. 6. Possible carry-save adder graphs with non-redundant input generating different coef-
ficient sets for 0 to 6 carry-save adders. The graphs are directed from left to right.

• The cost of a vertex is the number of incoming edges corresponding to non-redundant
words plus two times the number of incoming edges corresponding to carry-save words
minus two.

• The output edge(s) of a vertex is in carry-save representation, except for the initial ver-
tex.

All possible combinations of edge values for the given graphs can be searched and the
minimum-adder solution can easily be found. In Fig. 6 all possible graphs generating dif-
ferent sets of coefficients using up to six carry-save adders is shown. As in Fig. 5 the thin
lines represent data in a non-redundant format, while the bold lines represent carry-save for-
mat. Note that cost-0 graph 1 has a non-redundant output. The first graphs for each nonzero
cost corresponds to the CSD multiplier. Hence, this case is always covered by the proposed
approach.
It is worth noting that when four or more carry-save adders are required in a vertex it is
possible to re-arrange the adders into, e.g., a Wallace tree (Wallace, 1964). This will reduce the
adder depth of the multiplier.

3.1 Results
Exhaustive searches have been performed for multipliers containing up to six adders. This has
been done by searching all different combinations of possible shifts and signs for all graphs
up to six adders and saving the minimum number of adders in a table. The result is that all
integer numbers between 1 and 2k for wordlength k up to 19 can be obtained using six adders.
The maximum number of adders required for a given wordlength is shown in Fig. 7 for both
CSD multipliers and the proposed approach.
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Number of adders Graph number Maximum nonzero digits Minimum adder depth
0 1 1 0

2 2 0
1 1 3 1
2 1 4 2
3 1 5 3

2 6 3
4 1 6 3

2 7 4
3 8 4

5 1 7 4
2 8 4
3 9 5
4 12 5
5 9 4
6 10 5

6 1 8 4
2 9 4
3 10 5
4 13 6
5 10 5
6 11 6
7 12 5
8 14 6
9 12 5

10 16 6
11 11 5

Table 2. Maximum number of nonzero digits and minimum adder depth for the CSA multi-
plier graphs in Fig. 6 with non-redundant input data.

The average number of adders required for a given wordlength is shown in Fig. 8. It is clear
that savings only occurs when the coefficient wordlength is larger than nine bits. Figure 9
shows the average savings using the proposed approach. For 19 coefficient bits the savings
are just over 10%.
The maximum number of nonzero digits and minimum depth for each graph is shown in
Table 2. It can be seen that the graph 1 for each nonzero cost, the CSD multiplier graph, has the
smallest adder depth, but also the lowest number of maximum nonzero digits. Furthermore,
the graph with the highest number of maximum nonzero digits also is one of the multipliers
with the largest depth. Based on the observations in Fig. 6 and Table 2 we can conclude that
the maximum number of non-zero digits for K > 0 carry-save adders is

3 · 2
K−1

2 (5)

for odd K and
2

K+1
2 (6)

for even K.
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Fig. 7. Maximum number of CSAs as a function of coefficient wordlength for CSD multipliers
and proposed optimal multipliers.
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Number of adders Graph number Maximum nonzero digits Minimum adder depth
0 1 1 0

2 2 0
1 1 3 1
2 1 4 2
3 1 5 3

2 6 3
4 1 6 3

2 7 4
3 8 4

5 1 7 4
2 8 4
3 9 5
4 12 5
5 9 4
6 10 5

6 1 8 4
2 9 4
3 10 5
4 13 6
5 10 5
6 11 6
7 12 5
8 14 6
9 12 5

10 16 6
11 11 5

Table 2. Maximum number of nonzero digits and minimum adder depth for the CSA multi-
plier graphs in Fig. 6 with non-redundant input data.

The average number of adders required for a given wordlength is shown in Fig. 8. It is clear
that savings only occurs when the coefficient wordlength is larger than nine bits. Figure 9
shows the average savings using the proposed approach. For 19 coefficient bits the savings
are just over 10%.
The maximum number of nonzero digits and minimum depth for each graph is shown in
Table 2. It can be seen that the graph 1 for each nonzero cost, the CSD multiplier graph, has the
smallest adder depth, but also the lowest number of maximum nonzero digits. Furthermore,
the graph with the highest number of maximum nonzero digits also is one of the multipliers
with the largest depth. Based on the observations in Fig. 6 and Table 2 we can conclude that
the maximum number of non-zero digits for K > 0 carry-save adders is

3 · 2
K−1

2 (5)

for odd K and
2

K+1
2 (6)

for even K.
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3.2 Example
Consider the coefficient 693 = (101̄01̄01̄0101)CSD. To implement a multiplication with 693
using a CSD multiplier requires four CSAs. However, using graph-based multiplier 2 of cost
3 in Fig. 6 only three CSAs are required. The resulting graph and implementation is shown in
Fig. 10, where << n denotes a left-shift of n bits.
For the example it can be noted that the first fundamental is −11 instead of 11 to avoid two
negative input terms2. This is compensated for in the second adder stage.
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Fig. 10. Optimal CSA-based multiplication with 693: (a) graph representation directed form
left to right and (b) structure.

2 In this particular case it could also have been possible to use the representation 11 = 1 + 2 + 8 to avoid
subtractions.
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Fig. 11. Possible carry-save adder graphs with carry-save input generating different coefficient
sets for 0 to 10 carry-save adders. The graphs are directed from left to right.

4. Carry-Save Arithmetic Constant Multipliers with Carry-Save Representation In-
put

When the input data is in carry-save representation it is possible to use the same graphs as
in (Gustafsson et al., 2006). Now all words are in carry-save representation, and, hence, the
number of carry-save adders is two times the number of incoming edges minus two. The
possible graphs with up to ten adders are shown in Fig. 11.

4.1 Results
The possible savings in number of adders are similar to those in (Gustafsson et al., 2006) and
the average number of adders is shown in Fig. 12. The average savings of the graph-based
multipliers over CSD multipliers are shown in Fig. 13. Here, it can be seen that the average
savings are about 25% for 19-bits coefficients. Also, the maximum number of CSAs required
is reduced from 18 CSAs for a worst-case 19-bit CSD multiplier to 10 CSAs for a graph-based
multiplier.
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3.2 Example
Consider the coefficient 693 = (101̄01̄01̄0101)CSD. To implement a multiplication with 693
using a CSD multiplier requires four CSAs. However, using graph-based multiplier 2 of cost
3 in Fig. 6 only three CSAs are required. The resulting graph and implementation is shown in
Fig. 10, where << n denotes a left-shift of n bits.
For the example it can be noted that the first fundamental is −11 instead of 11 to avoid two
negative input terms2. This is compensated for in the second adder stage.
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sets for 0 to 10 carry-save adders. The graphs are directed from left to right.

4. Carry-Save Arithmetic Constant Multipliers with Carry-Save Representation In-
put

When the input data is in carry-save representation it is possible to use the same graphs as
in (Gustafsson et al., 2006). Now all words are in carry-save representation, and, hence, the
number of carry-save adders is two times the number of incoming edges minus two. The
possible graphs with up to ten adders are shown in Fig. 11.

4.1 Results
The possible savings in number of adders are similar to those in (Gustafsson et al., 2006) and
the average number of adders is shown in Fig. 12. The average savings of the graph-based
multipliers over CSD multipliers are shown in Fig. 13. Here, it can be seen that the average
savings are about 25% for 19-bits coefficients. Also, the maximum number of CSAs required
is reduced from 18 CSAs for a worst-case 19-bit CSD multiplier to 10 CSAs for a graph-based
multiplier.
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Fig. 12. Average number of CSAs as a function of coefficient wordlength for CSD multipliers
and proposed optimal multipliers with carry-save input.
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Fig. 13. Average percentage savings of CSAs for the proposed optimal multipliers over CSD
multipliers as a function of coefficient wordlength with carry-save input.

The adder depth for the CSA-based graphs can not be easily computed based on results from
the CPA-based graphs. The maximum number of nonzero digits and minimum depth for each
graph is shown in Table 3. Using a similar reasoning as in (Gustafsson et al., 2006) we get that
the maximum number of nonzero digits for a coefficient realized with K carry-save adders is
(K is always even)

2K/2 (7)

5. Multiple Constant Multiplication

For the case where several coefficients are multiplied with the same input a different approach
can be used. Here, it is beneficial to be able to share partial results among the different coef-
ficients to be able to reduce the total number of adders. It can be noted that the minimum
number of adders per coefficient is simply one. Ideally, one would just need one extra adder
for each unique3 result. This is clearly the case for transposed direct form FIR filters, where the
additions between the delay elements in Fig. 1, called structural additions, can be replaced by
subtractions for negative coefficients. It may be beneficial to use CSA-based structural adders
to obtain a high-speed implementation (Jain et al., 1991).

5.1 Proposed Algorithm
The proposed algorithm can be divided into an optimal part and a suboptimal part. The
optimal part of the algorithm is described as:

1. The algorithm only considers positive odd fundamentals. Hence, negative fundamen-
tals should be negated and even fundamentals should be divided by a suitable power
of two to obtain an odd fundamental.

2. The fundamental one and fundamentals on the form 2n ± 1 are removed as no CSAs
are required to obtain these fundamentals. The remaining fundamentals form a set of
unrealized fundamentals.

3. From the set of unrealized fundamentals add to the realized fundamental set all fun-
damentals, if any, that can be realized using one CSA, i.e., fundamentals on the form
2m ± 2n ± 1, where m > n > 1.

4. Form all possible combinations of the fundamentals in the realized set times a power
of two and a power of two, i.e., fundamentals on the form 2ma ± 1 and |a ± 2m|, where
a is an already realized fundamental. If any of these fundamentals are found in the
unrealized set, move these to the realized set. If any fundamental has been realized and
there are unrealized fundamentals remaining go to 4.

Each fundamental, added in steps 3 and 4, costs one adder. If all fundamentals are realized
after this stage, the realization is known to be optimal in terms of adders. If not, at least two
adders must be used to obtain one of the remaining fundamentals.
There are three different ways to obtain new fundamentals using two adders: fundamentals
that requires two adders to be realized on its own, adding two powers of two to a power of two
of an already realized fundamental, and a combination of two already realized fundamentals.
As the two first ways realizes yet another fundamental, these two have preference over the
combination of realized fundamentals. When two adders are required it is no longer certain
that the solution is optimal. The possibly suboptimal part of the algorithm is described as:

3 As shifts are free and sign often can be compensated for at some other part of the algorithm, all coeffi-
cients are normalized to be odd and positive.
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The adder depth for the CSA-based graphs can not be easily computed based on results from
the CPA-based graphs. The maximum number of nonzero digits and minimum depth for each
graph is shown in Table 3. Using a similar reasoning as in (Gustafsson et al., 2006) we get that
the maximum number of nonzero digits for a coefficient realized with K carry-save adders is
(K is always even)

2K/2 (7)

5. Multiple Constant Multiplication

For the case where several coefficients are multiplied with the same input a different approach
can be used. Here, it is beneficial to be able to share partial results among the different coef-
ficients to be able to reduce the total number of adders. It can be noted that the minimum
number of adders per coefficient is simply one. Ideally, one would just need one extra adder
for each unique3 result. This is clearly the case for transposed direct form FIR filters, where the
additions between the delay elements in Fig. 1, called structural additions, can be replaced by
subtractions for negative coefficients. It may be beneficial to use CSA-based structural adders
to obtain a high-speed implementation (Jain et al., 1991).

5.1 Proposed Algorithm
The proposed algorithm can be divided into an optimal part and a suboptimal part. The
optimal part of the algorithm is described as:

1. The algorithm only considers positive odd fundamentals. Hence, negative fundamen-
tals should be negated and even fundamentals should be divided by a suitable power
of two to obtain an odd fundamental.

2. The fundamental one and fundamentals on the form 2n ± 1 are removed as no CSAs
are required to obtain these fundamentals. The remaining fundamentals form a set of
unrealized fundamentals.

3. From the set of unrealized fundamentals add to the realized fundamental set all fun-
damentals, if any, that can be realized using one CSA, i.e., fundamentals on the form
2m ± 2n ± 1, where m > n > 1.

4. Form all possible combinations of the fundamentals in the realized set times a power
of two and a power of two, i.e., fundamentals on the form 2ma ± 1 and |a ± 2m|, where
a is an already realized fundamental. If any of these fundamentals are found in the
unrealized set, move these to the realized set. If any fundamental has been realized and
there are unrealized fundamentals remaining go to 4.

Each fundamental, added in steps 3 and 4, costs one adder. If all fundamentals are realized
after this stage, the realization is known to be optimal in terms of adders. If not, at least two
adders must be used to obtain one of the remaining fundamentals.
There are three different ways to obtain new fundamentals using two adders: fundamentals
that requires two adders to be realized on its own, adding two powers of two to a power of two
of an already realized fundamental, and a combination of two already realized fundamentals.
As the two first ways realizes yet another fundamental, these two have preference over the
combination of realized fundamentals. When two adders are required it is no longer certain
that the solution is optimal. The possibly suboptimal part of the algorithm is described as:

3 As shifts are free and sign often can be compensated for at some other part of the algorithm, all coeffi-
cients are normalized to be odd and positive.
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Number of adders Graph number Maximum nonzero digits Minimum adder depth
2 1 2 2
4 1 3 3

2 4 4
6 1 4 4

2 5 5
3 6 5
4 8 6

8 1 5 5
2 6 6
3 7 6
4 9 7
5 8 6
6 12 7
7 10 7
8 16 8
9 12 7
10 9 6
11 8 7

10 1 6 5
2 13 8
3 11 8
4 9 8
5 17 9
6 7 7
7 8 7
8 9 7
9 10 8
10 13 8
11 10 7
12 8 6
13 16 9
14 18 9
15 14 8
16 12 8
17 16 8
18 20 9
19 12 8
20 10 7
21 32 10
22 20 9
23 16 8
24 18 8
25 24 9
26 24 8
27 15 8
28 12 7
29 18 8
30 12 8
31 11 8
32 14 9
33 10 8
34 13 9

Table 3. Maximum number of nonzero digits and minimum adder depth for the CSA multi-
plier graphs in Fig. 11 with carry-save input data.

5. From the set of unrealized fundamentals find all fundamentals that can be realized us-
ing two CSAs, i.e., fundamentals on the form 2m ± 2n ± 2p ± 1, where m > n > p > 1.
These fundamental can be derived from one and up to ten different fundamentals of
cost-1. Find the cost-1 fundamental that is common to most unrealized fundamentals
and add that fundamental to the realized set. Also move all fundamentals that can be
realized from that cost-1 fundamental to the realized set. If there are more than one
cost-1 fundamental that can realize the maximal number of fundamentals chose the
minimum one. If there are unrealized fundamentals remaining and any fundamental
was added go to 4.

6. If there are unrealized fundamentals remaining, form the set of all fundamentals that
can be realized from one previously realized fundamental and two powers of two, i.e.,
on the form |a ± 2m ± 2n| or |2ma ± 2n ± 1|. If any fundamental in the unrealized set
is present in the generated set, move one of the fundamentals to the generated set.
One intermediate fundamental is also generated, select the one (out of two) with the
lowest magnitude to add to the set of realized fundamentals. If there are unrealized
fundamentals remaining and any fundamental was added go to 4.

7. If there are unrealized fundamentals remaining, form a set of combinations of previ-
ously realized fundamentals times a power of two, i.e., on the form |2ma ± b|. If any
fundamental in the unrealized set is present in the generated set, move one of the fun-
damentals to the generated set. If there are unrealized fundamentals remaining and any
fundamental was added go to 4.

8. If there are unrealized fundamentals remaining, it is necessary to add a complete coef-
ficient to the realized fundamental set. Complete coefficients with minimum number
of adders can be generated using the work described in Section 3. Select the coefficient
with the smallest sum of all its fundamentals (Dempster & Macleod, 1995). If there are
there are unrealized fundamentals remaining go to 4.

5.2 Results
We compare our algorithm with the RAGn algorithm (Dempster & Macleod, 1995), where the
resulting multiplier block is transformed to CSAs. Furthermore, we compare it to a modified
version of the algorithm in (Pasko et al., 1999). In the original algorithm all subexpressions
down to two bits were identified. As subexpressions with two bits are not useful when using
CSAs, the algorithm is modified so that it only identifies subexpressions with at least three
bits.
For sets of 25 coefficient with varying number of coefficient bits the average number of adders
are shown in Fig. 14. For comparison the results using carry-propagation adders and the
RAGn algorithm is included. Figure 14 shows that the proposed algorithm is better than both
the modified algorithm from (Pasko et al., 1999) and design using CPAs. However, if only the
actual number of adders is considered the CPA approach is better for nine coefficient bits and
above. This is due to the greater flexibility in using intermediate fundamentals for CPAs.
The average number of adders for different sized coefficient sets with 12-bits coefficients is
shown in Fig. 15. Again, the proposed algorithm is better compared to other algorithms. The
multiplier block based on CPAs requires fewer adders for all sizes of the coefficient set with
12-bits coefficients.
It is clear that when CSAs are required the proposed algorithm is better than both the modified
algorithm from (Pasko et al., 1999), which is based on subexpression sharing, and using the
RAGn algorithm for CPAs. However, it is also clear that if only the number of adders, i.e., the
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Number of adders Graph number Maximum nonzero digits Minimum adder depth
2 1 2 2
4 1 3 3

2 4 4
6 1 4 4

2 5 5
3 6 5
4 8 6
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2 6 6
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10 9 6
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10 1 6 5
2 13 8
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4 9 8
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12 8 6
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14 18 9
15 14 8
16 12 8
17 16 8
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19 12 8
20 10 7
21 32 10
22 20 9
23 16 8
24 18 8
25 24 9
26 24 8
27 15 8
28 12 7
29 18 8
30 12 8
31 11 8
32 14 9
33 10 8
34 13 9

Table 3. Maximum number of nonzero digits and minimum adder depth for the CSA multi-
plier graphs in Fig. 11 with carry-save input data.

5. From the set of unrealized fundamentals find all fundamentals that can be realized us-
ing two CSAs, i.e., fundamentals on the form 2m ± 2n ± 2p ± 1, where m > n > p > 1.
These fundamental can be derived from one and up to ten different fundamentals of
cost-1. Find the cost-1 fundamental that is common to most unrealized fundamentals
and add that fundamental to the realized set. Also move all fundamentals that can be
realized from that cost-1 fundamental to the realized set. If there are more than one
cost-1 fundamental that can realize the maximal number of fundamentals chose the
minimum one. If there are unrealized fundamentals remaining and any fundamental
was added go to 4.

6. If there are unrealized fundamentals remaining, form the set of all fundamentals that
can be realized from one previously realized fundamental and two powers of two, i.e.,
on the form |a ± 2m ± 2n| or |2ma ± 2n ± 1|. If any fundamental in the unrealized set
is present in the generated set, move one of the fundamentals to the generated set.
One intermediate fundamental is also generated, select the one (out of two) with the
lowest magnitude to add to the set of realized fundamentals. If there are unrealized
fundamentals remaining and any fundamental was added go to 4.

7. If there are unrealized fundamentals remaining, form a set of combinations of previ-
ously realized fundamentals times a power of two, i.e., on the form |2ma ± b|. If any
fundamental in the unrealized set is present in the generated set, move one of the fun-
damentals to the generated set. If there are unrealized fundamentals remaining and any
fundamental was added go to 4.

8. If there are unrealized fundamentals remaining, it is necessary to add a complete coef-
ficient to the realized fundamental set. Complete coefficients with minimum number
of adders can be generated using the work described in Section 3. Select the coefficient
with the smallest sum of all its fundamentals (Dempster & Macleod, 1995). If there are
there are unrealized fundamentals remaining go to 4.

5.2 Results
We compare our algorithm with the RAGn algorithm (Dempster & Macleod, 1995), where the
resulting multiplier block is transformed to CSAs. Furthermore, we compare it to a modified
version of the algorithm in (Pasko et al., 1999). In the original algorithm all subexpressions
down to two bits were identified. As subexpressions with two bits are not useful when using
CSAs, the algorithm is modified so that it only identifies subexpressions with at least three
bits.
For sets of 25 coefficient with varying number of coefficient bits the average number of adders
are shown in Fig. 14. For comparison the results using carry-propagation adders and the
RAGn algorithm is included. Figure 14 shows that the proposed algorithm is better than both
the modified algorithm from (Pasko et al., 1999) and design using CPAs. However, if only the
actual number of adders is considered the CPA approach is better for nine coefficient bits and
above. This is due to the greater flexibility in using intermediate fundamentals for CPAs.
The average number of adders for different sized coefficient sets with 12-bits coefficients is
shown in Fig. 15. Again, the proposed algorithm is better compared to other algorithms. The
multiplier block based on CPAs requires fewer adders for all sizes of the coefficient set with
12-bits coefficients.
It is clear that when CSAs are required the proposed algorithm is better than both the modified
algorithm from (Pasko et al., 1999), which is based on subexpression sharing, and using the
RAGn algorithm for CPAs. However, it is also clear that if only the number of adders, i.e., the
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Fig. 14. Average number of adders for sets of 25 random coefficients.
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Fig. 15. Average number of adders for sets with 12-bits coefficients.

chip area, is of interest the RAGn algorithm with CPAs is the best choice. It should be noted
that for the CSA multiplier block each coefficient requires a CPA to convert the carry-save
representation to a non-redundant form, unless the redundant representation is used in later
processing such as when carry-save structural adders are used.

6. Conclusions

Carry-save adders are useful to obtain high-speed implementation as carry-propagation can
be avoided. However, when designing constant multipliers special care must be taken where
the properties of the CSAs are considered. In this chapter we described the optimal design of
single constant multipliers for coefficients with up to 19 bits wordlength. Both the cases with
non-redundant representation as well as carry-save representation of the input was consid-
ered.
An algorithm for the multiple constant multiplication problem, suitable for transposed direct
form FIR filters using carry-save representation of intermediate results but non-redundant
input, was also presented.
For the non-redundant input cases, the results show that the number of CSAs is higher than
the corresponding number of CPAs. Hence, from a complexity point of view, CPAs are ad-
vantageous. As such, the proposed techniques are useful when a high-speed realization is
required.
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Fig. 15. Average number of adders for sets with 12-bits coefficients.

chip area, is of interest the RAGn algorithm with CPAs is the best choice. It should be noted
that for the CSA multiplier block each coefficient requires a CPA to convert the carry-save
representation to a non-redundant form, unless the redundant representation is used in later
processing such as when carry-save structural adders are used.

6. Conclusions

Carry-save adders are useful to obtain high-speed implementation as carry-propagation can
be avoided. However, when designing constant multipliers special care must be taken where
the properties of the CSAs are considered. In this chapter we described the optimal design of
single constant multipliers for coefficients with up to 19 bits wordlength. Both the cases with
non-redundant representation as well as carry-save representation of the input was consid-
ered.
An algorithm for the multiple constant multiplication problem, suitable for transposed direct
form FIR filters using carry-save representation of intermediate results but non-redundant
input, was also presented.
For the non-redundant input cases, the results show that the number of CSAs is higher than
the corresponding number of CPAs. Hence, from a complexity point of view, CPAs are ad-
vantageous. As such, the proposed techniques are useful when a high-speed realization is
required.
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1. Introduction

Among the best structures for implementing recursive digital filters are lattice wave digital
(LWD) filters (parallel connections of all-pass filters). They are characterized by many attrac-
tive properties, such as a reasonably low coefficient sensitivity, a low roundoff noise level,
and the absence of parasitic oscillations. This book chapter describes an efficient algorithm
for the design of multiplierless LWD filters in the following three cases. In the first case, the
overall filter is constructed as a cascade of low-order LWD filters. As a consequence, the num-
ber of bits required for both the data and coefficient representations are significantly reduced
compared with the conventional direct-form LWD filter. In the second case, approximately
linear-phase LWD filters are constructed as a single block because it has been observed that
in this case the use of a cascade of several filter blocks does not provide any benefits over the
direct-form LWD filter design. The third case concentrates on the design of special recursive
single-stage and multistage Nth-band decimators and interpolators providing the sampling
rate conversion by the factor of N. For this filter class, the decimation and interpolation filter
in the single-stage design (the kth decimation and interpolation filter in the multistage design,
where N is factorizable as a product of K integers as N = N1N2 · · · NK) is characterized by the
fact that it can be decomposed into parallel connection of N (Nk) polyphase components that
are obtainable from cascades of first-order all-pass filters by substituting for each unit delay
N (Nk) unit delays.
The coefficient optimization is performed using the following three steps. First, an initial
infinite-precision filter is designed such that it exceeds the given criteria in order to provide
some tolerance for coefficient quantization. Second, a nonlinear optimization algorithm is
used for determining a parameter space of the infinite-precision coefficients including the
feasible space where the filter meets the given criteria. The third step involves finding the filter
parameters in this space so that the resulting filter meets the given criteria with the simplest
coefficient representation forms. The proposed algorithm guarantees that the optimum finite-
precision solution can be found for the multiplierless coefficient representation forms. Filters
of this kind are very attractive in very large-scale integration implementations because the
realization of these filters does not require the use of very costly general multiplier elements.
Several examples are included to illustrate the benefits of the proposed synthesis scheme as
well as the resulting filters.
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2. Lattice Wave Digital Filters

One of the best structures for implementing recursive digital filters are the lattice wave digi-
tal (LWD) filters (Fettweis, 1986; Fettweis et al., 1974; Gazsi, 1985; Wanhammar, 1998) that are
related to certain analog prototype networks. The number of multipliers required in the im-
plementation is directly the filter order, unlike in some other implementation forms, such as
in the canonical direct-form realizations requiring approximately twice the number of multi-
pliers.
An LWD filter consists of a parallel connection of all-pass filters. These all-pass subfilters can
be realized by using first- and second-order sections as basic building blocks. The resulting
filter structures are highly modular, thereby making them suitable for very large-scale integra-
tion (VLSI) implementations (Milić & Lutovac, 1999; Saramäki & Ritoniemi, 1993). All-pass
subfilters are also the basic building blocks of recursive half-band filters (Ansari & Liu, 1983;
Gazsi, 1985), Hilbert transformers (Brophy & Salazar, 1975; Regalia, 1993; Saramäki & Ren-
fors, 1995), filters approximately providing an arbitrary linear-phase phase response or an
arbitrary phase delay in the given passband (Saramäki & Renfors, 1995), several efficient re-
cursive filter-bank classes (Bregović, 2003; Saramäki & Bregović, 2002; Vollmer & Kopmann,
2002), and recursive Nth-band filters (Renfors & Saramäki, 1987; Taxén, 1981) that have been
found to be very efficient in sampling rate conversion applications. It is also possible to de-
sign LWD filters to have an approximately linear phase in the passband (Jaworski & Saramäki,
1994; Jones et al., 1991; Renfors & Saramäki, 1986; Surma-aho, 1997; Surma-aho & Saramäki,
1999). Such designs are suitable in applications where linear-phase finite-impulse response
(FIR) filters would have an excessive signal delay, that is, in applications demanding nar-
row transition bandwidth. This is due to the fact that the order of linear-phase FIR filters is
roughly inversely proportional to the transition bandwidth (Herrmann et al., 1973; Saramäki,
1993). In addition, those approximately linear-phase LWD filters proposed in (Surma-aho,
1997; Surma-aho & Saramäki, 1999) are superior over their linear-phase FIR equivalents, in
terms of the required number of multipliers, adders, and delay elements, in narrow-band
cases, where linear-phase FIR filters have inherently a high filter order.
This section revises the transfer functions of the filter classes under consideration in this con-
tribution. These filter classes consist of cascades of low-order LWD filters, approximately
linear-phase LWD filters, and recursive Nth-band decimators and interpolators.

2.1 Cascade Connection of LWD Filters
When considering the parallel connection of two all-pass filters, it is well-known that the co-
efficient sensitivity is very low in the passband provided that the all-pass filter structures are
constructed such that their transfer functions remain all-pass in spite of coefficient quantiza-
tion (Regalia et al., 1988). However, the stopband sensitivity is not as good. In most cases, it
has turned out that the required coefficient wordlength is roughly proportional to the required
stopband attenuation (Renfors & Saramäki, 1986). Therefore, the coefficient wordlength re-
quirements can be reduced if the filter is realized using subfilters with lower stopband atten-
uations, e.g., in cascade or, more generally, as a tapped cascaded interconnection of identical
subfilters (Saramäki & Renfors, 1987).
An approach to designing recursive filters using a cascade of different LWD filters has been
proposed in (Saramäki & Yli-Kaakinen, 2002; Yli-Kaakinen, 2002; Yli-Kaakinen & Saramäki,
1999b). The main advantage of this approach is that the poles of the cascaded LWD filters are
further away from the unit circle compared with the direct LWD filters. This means that the
number of data bits and the number of bits required for the coefficient representations can be

significantly reduced. By properly determining the number of filter stages to be cascaded as
well as their orders, all the coefficient values can be optimized to be representable as a few
powers of two. This makes the proposed filter structure very attractive for VLSI implementa-
tions as under these circumstances all the coefficient values can be simply implemented using
hardwired logic consisting of only shift operations as well as additions and/or subtractions,
instead of using very costly general multiplier elements.
The transfer function of a cascade connection of LWD filters is given by
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K

∏
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1
2
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related to certain analog prototype networks. The number of multipliers required in the im-
plementation is directly the filter order, unlike in some other implementation forms, such as
in the canonical direct-form realizations requiring approximately twice the number of multi-
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An LWD filter consists of a parallel connection of all-pass filters. These all-pass subfilters can
be realized by using first- and second-order sections as basic building blocks. The resulting
filter structures are highly modular, thereby making them suitable for very large-scale integra-
tion (VLSI) implementations (Milić & Lutovac, 1999; Saramäki & Ritoniemi, 1993). All-pass
subfilters are also the basic building blocks of recursive half-band filters (Ansari & Liu, 1983;
Gazsi, 1985), Hilbert transformers (Brophy & Salazar, 1975; Regalia, 1993; Saramäki & Ren-
fors, 1995), filters approximately providing an arbitrary linear-phase phase response or an
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2002), and recursive Nth-band filters (Renfors & Saramäki, 1987; Taxén, 1981) that have been
found to be very efficient in sampling rate conversion applications. It is also possible to de-
sign LWD filters to have an approximately linear phase in the passband (Jaworski & Saramäki,
1994; Jones et al., 1991; Renfors & Saramäki, 1986; Surma-aho, 1997; Surma-aho & Saramäki,
1999). Such designs are suitable in applications where linear-phase finite-impulse response
(FIR) filters would have an excessive signal delay, that is, in applications demanding nar-
row transition bandwidth. This is due to the fact that the order of linear-phase FIR filters is
roughly inversely proportional to the transition bandwidth (Herrmann et al., 1973; Saramäki,
1993). In addition, those approximately linear-phase LWD filters proposed in (Surma-aho,
1997; Surma-aho & Saramäki, 1999) are superior over their linear-phase FIR equivalents, in
terms of the required number of multipliers, adders, and delay elements, in narrow-band
cases, where linear-phase FIR filters have inherently a high filter order.
This section revises the transfer functions of the filter classes under consideration in this con-
tribution. These filter classes consist of cascades of low-order LWD filters, approximately
linear-phase LWD filters, and recursive Nth-band decimators and interpolators.

2.1 Cascade Connection of LWD Filters
When considering the parallel connection of two all-pass filters, it is well-known that the co-
efficient sensitivity is very low in the passband provided that the all-pass filter structures are
constructed such that their transfer functions remain all-pass in spite of coefficient quantiza-
tion (Regalia et al., 1988). However, the stopband sensitivity is not as good. In most cases, it
has turned out that the required coefficient wordlength is roughly proportional to the required
stopband attenuation (Renfors & Saramäki, 1986). Therefore, the coefficient wordlength re-
quirements can be reduced if the filter is realized using subfilters with lower stopband atten-
uations, e.g., in cascade or, more generally, as a tapped cascaded interconnection of identical
subfilters (Saramäki & Renfors, 1987).
An approach to designing recursive filters using a cascade of different LWD filters has been
proposed in (Saramäki & Yli-Kaakinen, 2002; Yli-Kaakinen, 2002; Yli-Kaakinen & Saramäki,
1999b). The main advantage of this approach is that the poles of the cascaded LWD filters are
further away from the unit circle compared with the direct LWD filters. This means that the
number of data bits and the number of bits required for the coefficient representations can be

significantly reduced. By properly determining the number of filter stages to be cascaded as
well as their orders, all the coefficient values can be optimized to be representable as a few
powers of two. This makes the proposed filter structure very attractive for VLSI implementa-
tions as under these circumstances all the coefficient values can be simply implemented using
hardwired logic consisting of only shift operations as well as additions and/or subtractions,
instead of using very costly general multiplier elements.
The transfer function of a cascade connection of LWD filters is given by
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Fig. 1. Filter structure for a cascade connection of LWD filters. The detailed implementation

of the kth transfer function Hk(z) as a parallel connection of A(k)
0 (z) and the A(k)

1 (z) is shown
in Fig. 2.
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Fig. 2. Implementation of the kth transfer function in Fig. 1 as a parallel connection of two

all-pass filter transfer functions. A(k)
0 (z) and A(k)

1 (z) are stable all-pass filter transfer functions
consisting of a cascade of first- and second-order wave digital all-pass sections. These first-
and second-order wave digital all-pass sections are constructed based on the use of two-port
adaptor structures to be described in Section 3.

Figure 2 shows the realization for a low-pass sub-filter transfer function Hk(z), where the first-
and second-order sections of (2a) and (2b) are implemented as a cascade of first- and second-
order wave-digital all-pass structures, out of which the best ones for the main purposes of this
book chapter will be considered in detail in Section 3.
In the high-pass case, the corresponding transfer function is obtained by simply changing the

sign of A(k)
0 (z) or A(k)

1 (z) in (1) (Gazsi, 1985). In the band-stop case, M(k)
0 and M(k)

1 are two

times an odd integer and an even integer, respectively, and M(k)
0 = M(k)

1 − 2 or M(k)
0 = M(k)

1 +

2. The corresponding band-pass design can be generated by changing the sign of A(k)
0 (z) or

A(k)
1 (z). The main difference of the band-pass and band-stop filter designs in comparison with

the low-pass and high-pass filter designs is thus that the first-order section is absent.

2.2 Approximately Linear-Phase LWD Filters
One of the most difficult problems in digital filter synthesis is the simultaneous optimization
of the phase and magnitude responses of recursive digital filters. This is because the phase
of recursive filters is inherently nonlinear and, therefore, the frequency selectivity and phase
linearity are conflicting requirements. The most straightforward approach to arrive at a re-
cursive filter having simultaneously a selective magnitude response and an approximately
linear-phase response in the passband region is to generate the filter in two steps. First, a fil-
ter with the desired magnitude response is designed. Then, the phase response of this filter
is made approximately linear in the passband by cascading it with an all-pass phase equal-
izer (Deczky, 1972; Rabiner & Gold, 1975). The main drawback in this approach is that the
phase response of the frequency-selective filter is usually very nonlinear and, therefore, a
very high-order phase equalizer is needed in order to make the phase response of the overall
filter approximately linear.
It has turned out (Földvári-Orosz et al., 1991; Jaworski & Saramäki, 1994; Jones et al., 1991;
Lawson & Wicks, 1992; Leeb, 1991; Surma-aho, 1997; Surma-aho & Saramäki, 1999) to be more
beneficial to implement an approximately linear-phase recursive filter directly without us-
ing a separate phase equalizer. In the design techniques described in (Földvári-Orosz et al.,
1991; Jaworski & Saramäki, 1994; Jones et al., 1991; Lawson & Wicks, 1992; Leeb, 1991; Surma-
aho, 1997; Surma-aho & Saramäki, 1999), it has been observed that in order to simultaneously
achieve a selective magnitude response and an approximately linear-phase performance in
the passband, it is required that some zeros of the filter be located outside the unit circle.
For approximately linear-phase LWD filters, it has been discovered in (Saramäki & Yli-
Kaakinen, 2002) that the use of a cascade of several filter blocks does not provide any benefits
in the VLSI implementations. Therefore, the transfer function for the approximately linear-
phase LWD filters is given by (1) with K = 1, that is, H(z) is expressible as

H(z) =
1
2

[
A(1)

0 (z) + A(1)
1 (z)

]
, (4)

where A(1)
0 (z) and A(1)

1 (z) are given by (2a) and (2b), respectively.

2.3 Recursive N th-Band Decimators and Interpolators
The best structures for implementing decimation and interpolation filters in cases where
the phase linearity is not important, are the so-called recursive Nth-band filters (Renfors &
Saramäki, 1987; Saramäki & Renfors, 1998; Yli-Kaakinen et al., 1999).1 These recursive Nth-
band filters when used alone for decimation by the factor of N suffer, due to their properties,
from the drawback that, after specifying the passband edge to be ωp = απ/N with α < 1, only
aliasing into the passband region [0, ωp] can be fully avoided, but aliasing into the transition
band [ωp, π/N] occurs. In the interpolation case, this causes the corresponding imaging ef-
fects. If these effects can be tolerated and a linear-phase performance is not required, then
these recursive polyphase filters require the lowest computational complexities among the
known decimators and interpolators. From a computational point of view, it is very advan-
tageous to use multistage decimators and interpolators whenever possible, instead of using a
single-stage realization. The design of recursive Nth-band filters and their use for decimation

1 It is also possible to design recursive Nth-band filters to have an approximately linear-phase response
in the passband (Ansari & Liu, 1983; Renfors & Saramäki, 1987). These filters require significantly
higher computational complexities than the corresponding nonlinear-phase Nth-band filters, but they
compare favorably with conventional linear-phase FIR filters.
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izer (Deczky, 1972; Rabiner & Gold, 1975). The main drawback in this approach is that the
phase response of the frequency-selective filter is usually very nonlinear and, therefore, a
very high-order phase equalizer is needed in order to make the phase response of the overall
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It has turned out (Földvári-Orosz et al., 1991; Jaworski & Saramäki, 1994; Jones et al., 1991;
Lawson & Wicks, 1992; Leeb, 1991; Surma-aho, 1997; Surma-aho & Saramäki, 1999) to be more
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aho, 1997; Surma-aho & Saramäki, 1999), it has been observed that in order to simultaneously
achieve a selective magnitude response and an approximately linear-phase performance in
the passband, it is required that some zeros of the filter be located outside the unit circle.
For approximately linear-phase LWD filters, it has been discovered in (Saramäki & Yli-
Kaakinen, 2002) that the use of a cascade of several filter blocks does not provide any benefits
in the VLSI implementations. Therefore, the transfer function for the approximately linear-
phase LWD filters is given by (1) with K = 1, that is, H(z) is expressible as
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0 (z) and A(1)

1 (z) are given by (2a) and (2b), respectively.

2.3 Recursive N th-Band Decimators and Interpolators
The best structures for implementing decimation and interpolation filters in cases where
the phase linearity is not important, are the so-called recursive Nth-band filters (Renfors &
Saramäki, 1987; Saramäki & Renfors, 1998; Yli-Kaakinen et al., 1999).1 These recursive Nth-
band filters when used alone for decimation by the factor of N suffer, due to their properties,
from the drawback that, after specifying the passband edge to be ωp = απ/N with α < 1, only
aliasing into the passband region [0, ωp] can be fully avoided, but aliasing into the transition
band [ωp, π/N] occurs. In the interpolation case, this causes the corresponding imaging ef-
fects. If these effects can be tolerated and a linear-phase performance is not required, then
these recursive polyphase filters require the lowest computational complexities among the
known decimators and interpolators. From a computational point of view, it is very advan-
tageous to use multistage decimators and interpolators whenever possible, instead of using a
single-stage realization. The design of recursive Nth-band filters and their use for decimation

1 It is also possible to design recursive Nth-band filters to have an approximately linear-phase response
in the passband (Ansari & Liu, 1983; Renfors & Saramäki, 1987). These filters require significantly
higher computational complexities than the corresponding nonlinear-phase Nth-band filters, but they
compare favorably with conventional linear-phase FIR filters.



Digital Filters262

N1

x(n)
H1(z) NKH2(z) H2(z)

y(n)

Fs/N
N2

x(n)
H1(z)H2(zN1)H3(zN1N2) · · · HK(zN1N2···NK)

Fs

N1N2···NK

y(n)

Fs/N

(a)

(b)

Fs
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and interpolation has been discussed in detail in (Renfors & Saramäki, 1987). In this arti-
cle, it has also been described how to get around the above-mentioned drawbacks by using
an additional LWD filter at the output of the overall decimator or at the input of the overall
interpolator.
Due to the duality between decimators and interpolators, the discussion in this book chapter
will concentrate on the design of decimators. If the sampling rate conversion ratio can be
factored into the product

N =
K

∏
k=1

Nk, (5)

where N1, N2, . . . , NK are integers, then the overall decimation by the factor of N can be im-
plemented using K stages as shown in Fig. 3(a) (Renfors & Saramäki, 1987). In order to con-
siderably clarify the analysis and determination of the roles of the sub-blocks of Fig. 3(a) in
simultaneously providing the desired decimation by the overall factor of N, it is advantageous
to replace the implementation of Fig. 3(a) by its its single-stage equivalent of Fig. 3(b). In this
equivalent, only one filter with transfer function

H(z) =
K

∏
k=1

Hk(z
Ñk ), where Ñ1 = 1 and Ñr =

r−1

∏
k=1

Nk for r = 2, 3, . . . , K (6)

is involved followed by decimation by a factor of N. The magnitude response of the above
overall filter is thus

|H(ejω)| =
K

∏
k=1

Hk(e
jÑkω). (7)

When the transfer functions Hk(z) for k = 1, 2, . . . , K in Fig. 3(a) are implemented with the
aid of the K recursive (nonlinear-phase) Nkth-band filters, where Nk is the decimation factor
after the kth subfilter, the transfer function in the single-stage equivalent of Fig. 3(b) is used
as a basic transfer function when synthesizing Nth-band decimators. For this purpose, this
transfer function is expressed as

H(z) =
K

∏
k=1

Hk(z
Ñk ), where Hk(z) =

1
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transfer functions of stable all-pass filters consisting of a cascade of first-order wave-digital
all-pass sections.
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Here, the transfer functions A(k)
n (z) are the following cascades of first-order stable all-pass

transfer functions:

A(k)
n (z) =

L̃(k)
n +L(k)

n

∏
�=L̃(k)

n +1

−γ
(k)
� + z−1

1 − γ
(k)
� z−1

for n = 0, 1, . . . , Nk − 1 and for k = 1, 2, . . . , K, (8b)

where

L̃0 = 0 and L̃(k)
n =

n−1

∑
r=0

L(k)
r for n = 0, 1, . . . , Nk − 1. (8c)

Hence, each A(k)
n for n = 0, 1, . . . , Nk − 1 and for k = 1, 2, . . . , K possesses L(k)

n real poles at

z = r(k)� = γ
(k)
� for � = L̃(k)

n + 1, L̃(k)
n + 2, . . . , L̃(k)

n + L(k)
n .

The transfer function of (8a), (8b), and (8c) corresponds to the decimation structure of Fig. 4.
From the practical implementation point of view, this structure becomes very attractive if the
kth transfer function followed by decimation by the factor of Nk is replaced by the highly ef-
ficient commutative structure of Fig. 5 (Crochiere & Rabiner, 1983). The advantages of this

structure are that the delay line is not needed and the branch filters A(k)
n (zNk )’s are imple-

mented as A(k)
n (z)’s at the lower sampling rate. This reduces by the factor of Nk both the

number of multiplications per input sample and the delay terms required for implementing
the branch filters.
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and interpolation has been discussed in detail in (Renfors & Saramäki, 1987). In this arti-
cle, it has also been described how to get around the above-mentioned drawbacks by using
an additional LWD filter at the output of the overall decimator or at the input of the overall
interpolator.
Due to the duality between decimators and interpolators, the discussion in this book chapter
will concentrate on the design of decimators. If the sampling rate conversion ratio can be
factored into the product
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where N1, N2, . . . , NK are integers, then the overall decimation by the factor of N can be im-
plemented using K stages as shown in Fig. 3(a) (Renfors & Saramäki, 1987). In order to con-
siderably clarify the analysis and determination of the roles of the sub-blocks of Fig. 3(a) in
simultaneously providing the desired decimation by the overall factor of N, it is advantageous
to replace the implementation of Fig. 3(a) by its its single-stage equivalent of Fig. 3(b). In this
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When the transfer functions Hk(z) for k = 1, 2, . . . , K in Fig. 3(a) are implemented with the
aid of the K recursive (nonlinear-phase) Nkth-band filters, where Nk is the decimation factor
after the kth subfilter, the transfer function in the single-stage equivalent of Fig. 3(b) is used
as a basic transfer function when synthesizing Nth-band decimators. For this purpose, this
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The transfer function of (8a), (8b), and (8c) corresponds to the decimation structure of Fig. 4.
From the practical implementation point of view, this structure becomes very attractive if the
kth transfer function followed by decimation by the factor of Nk is replaced by the highly ef-
ficient commutative structure of Fig. 5 (Crochiere & Rabiner, 1983). The advantages of this

structure are that the delay line is not needed and the branch filters A(k)
n (zNk )’s are imple-

mented as A(k)
n (z)’s at the lower sampling rate. This reduces by the factor of Nk both the

number of multiplications per input sample and the delay terms required for implementing
the branch filters.
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3. Coefficient Representation under Consideration

This contribution concentrates on the coefficient quantization in fixed-point arithmetic. In
many implementations, it is attractive to carry out the multiplication of a data sample by
a filter coefficient value using a sequence of shifts and adds and/or substracts. For such a
purpose, it is desirable to express the coefficient values in the form

R

∑
r=1

ar2−Pr , (9)

where each of the ar’s is either 1 or −1 and the Pr’s are non-negative integers in the increasing
order.
The goal in optimization problems stated in Section 4 is to minimize the implementation cost
by finding all the coefficient values in such a way that, first, R, the number of powers of two,
is made as small as possible and, then, PR, the number of fractional bits, is made as small as
possible.
A reasonable estimate for the implementation cost of the filter is the number of adders and/or
subtracters required to implement all the adaptor coefficients. When using this estimate, the
overall silicon area and the power consumption required by the full-custom VLSI implemen-
tation of the filter is roughly minimized (Ohlsson et al., 2001; Wanhammar, 1998).
It should be pointed out that, in addition to adders and/or subtracters needed for the adaptor
coefficients, several structural adders are also required for implementing the wave-digital all-
pass sections. These first- and second-order wave-digital all-pass sections are constructed
based on the use of two-port adaptor structures and delays as depicted in Fig 2. For LWD
filters, there exists a great variety of adaptor structures according to the realization possibilities
of the analog reference filters (Fettweis, 1986; Fettweis et al., 1974; Gazsi, 1985). The actual
multipliers to be implemented and the number of structural adders required to implement
the two-port adaptor structures depends on the selected adaptor type.
Figure 6 shows particular symmetric two-port adaptor structures that lead to the optimal scal-
ing for a sinusoidal excitation according to the discussion in (Gazsi, 1985). However, it has
been shown, based a further study performed in (Renfors & Zigouris, 1988), that in some
cases for the second-order wave-digital all-pass sections, the additional scaling factors c and
1/c are required at the input and the output of the second adaptor, respectively, in order to
achieve the optimal scaling. In order to keep the resulting second-order sections still all-pass,
c must be a (positive or negative) power of two. Due to this fact, the above improved scaling
has no effect on the overall procedure and the results achieved in this contribution.
The selection among the four optional structures of Fig. 6 depends on the value of the mul-
tiplier γ such that the structures of Figs. 6(a), 6(b), 6(c), and 6(d) are chosen for 1

2 < γ < 1,
0 < γ ≤ 1

2 , − 1
2 ≤ γ < 0, and −1 < γ < − 1

2 , respectively. In these cases, the value of α, the
actual multiplier to be implemented, depends on the value of γ as follows:

α =




1 − γ for 1
2 < γ < 1

γ for 0 < γ ≤ 1
2

−γ for − 1
2 ≤ γ < 0

1 + γ for −1 < γ < − 1
2 .

(10)

Consequently, the value of α is always positive and less than or equal to half. Therefore, when
the absolute value of γ is greater than half, the number of adders required for implementing
the corresponding α coefficient decreases by one.
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Fig. 6. Efficient two-port adaptor structures yielding optimal scaling for a sinusoidal excitation
(Gazsi, 1985).

4. Optimization Problems for the Filter Classes under Consideration

This chapter summarizes the optimization problems for all the three filter classes under con-
sideration in this book chapter. For each filter class, the specifications, the adjustable parame-
ter vector, and the optimization problem will be described.
Before stating the optimization problem for each of the above-mentioned three filter classes,
the transfer function for each filter class is denoted in the same manner by H(Φ, z), where
Φ is the adjustable parameter vector containing the adjustable parameters which depend on
the filter class at hand in a manner to be described later on. Similarly, the magnitude criteria
are stated in the common manner as follows. Given Ωp and Ωs, the passband and stopband
regions, respectively, as well as δp and δs, the passband and stopband ripples, respectively, the
magnitude specifications for the filter are stated as follows:

1 − δp ≤ |H(Φ, ejω)| ≤ 1 for ω ∈ Ωp (11a)

|H(Φ, ejω)| ≤ δs for ω ∈ Ωs. (11b)

It is worth pointing out that these specifications are typical of most recursive filters built using
all-pass filters as building blocks as, in these most cases, the filter structure constrains the max-
imum of the magnitude response to be unity. Alternatively, the above criteria are expressible
as

|E(Φ, ω)| ≤ 1 for ω ∈ Ωp ∪ Ωs (12a)

E(Φ, ω) ≤ 0 for ω ∈ Ωp, (12b)

where
E(Φ, ω) = W(ω)[|H(Φ, ejω)| − D(ω)] (12c)

with

D(ω) =

{
1 for ω ∈ Ωp

0 for ω ∈ Ωs
and W(ω) =

{
1/δp for ω ∈ Ωp

1/δs for ω ∈ Ωs.
(12d)



A Systematic Algorithm for the Synthesis of Multiplierless Lattice Wave Digital Filters 265

3. Coefficient Representation under Consideration

This contribution concentrates on the coefficient quantization in fixed-point arithmetic. In
many implementations, it is attractive to carry out the multiplication of a data sample by
a filter coefficient value using a sequence of shifts and adds and/or substracts. For such a
purpose, it is desirable to express the coefficient values in the form

R

∑
r=1

ar2−Pr , (9)

where each of the ar’s is either 1 or −1 and the Pr’s are non-negative integers in the increasing
order.
The goal in optimization problems stated in Section 4 is to minimize the implementation cost
by finding all the coefficient values in such a way that, first, R, the number of powers of two,
is made as small as possible and, then, PR, the number of fractional bits, is made as small as
possible.
A reasonable estimate for the implementation cost of the filter is the number of adders and/or
subtracters required to implement all the adaptor coefficients. When using this estimate, the
overall silicon area and the power consumption required by the full-custom VLSI implemen-
tation of the filter is roughly minimized (Ohlsson et al., 2001; Wanhammar, 1998).
It should be pointed out that, in addition to adders and/or subtracters needed for the adaptor
coefficients, several structural adders are also required for implementing the wave-digital all-
pass sections. These first- and second-order wave-digital all-pass sections are constructed
based on the use of two-port adaptor structures and delays as depicted in Fig 2. For LWD
filters, there exists a great variety of adaptor structures according to the realization possibilities
of the analog reference filters (Fettweis, 1986; Fettweis et al., 1974; Gazsi, 1985). The actual
multipliers to be implemented and the number of structural adders required to implement
the two-port adaptor structures depends on the selected adaptor type.
Figure 6 shows particular symmetric two-port adaptor structures that lead to the optimal scal-
ing for a sinusoidal excitation according to the discussion in (Gazsi, 1985). However, it has
been shown, based a further study performed in (Renfors & Zigouris, 1988), that in some
cases for the second-order wave-digital all-pass sections, the additional scaling factors c and
1/c are required at the input and the output of the second adaptor, respectively, in order to
achieve the optimal scaling. In order to keep the resulting second-order sections still all-pass,
c must be a (positive or negative) power of two. Due to this fact, the above improved scaling
has no effect on the overall procedure and the results achieved in this contribution.
The selection among the four optional structures of Fig. 6 depends on the value of the mul-
tiplier γ such that the structures of Figs. 6(a), 6(b), 6(c), and 6(d) are chosen for 1

2 < γ < 1,
0 < γ ≤ 1

2 , − 1
2 ≤ γ < 0, and −1 < γ < − 1

2 , respectively. In these cases, the value of α, the
actual multiplier to be implemented, depends on the value of γ as follows:

α =




1 − γ for 1
2 < γ < 1

γ for 0 < γ ≤ 1
2

−γ for − 1
2 ≤ γ < 0

1 + γ for −1 < γ < − 1
2 .

(10)

Consequently, the value of α is always positive and less than or equal to half. Therefore, when
the absolute value of γ is greater than half, the number of adders required for implementing
the corresponding α coefficient decreases by one.
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Fig. 6. Efficient two-port adaptor structures yielding optimal scaling for a sinusoidal excitation
(Gazsi, 1985).

4. Optimization Problems for the Filter Classes under Consideration

This chapter summarizes the optimization problems for all the three filter classes under con-
sideration in this book chapter. For each filter class, the specifications, the adjustable parame-
ter vector, and the optimization problem will be described.
Before stating the optimization problem for each of the above-mentioned three filter classes,
the transfer function for each filter class is denoted in the same manner by H(Φ, z), where
Φ is the adjustable parameter vector containing the adjustable parameters which depend on
the filter class at hand in a manner to be described later on. Similarly, the magnitude criteria
are stated in the common manner as follows. Given Ωp and Ωs, the passband and stopband
regions, respectively, as well as δp and δs, the passband and stopband ripples, respectively, the
magnitude specifications for the filter are stated as follows:

1 − δp ≤ |H(Φ, ejω)| ≤ 1 for ω ∈ Ωp (11a)

|H(Φ, ejω)| ≤ δs for ω ∈ Ωs. (11b)

It is worth pointing out that these specifications are typical of most recursive filters built using
all-pass filters as building blocks as, in these most cases, the filter structure constrains the max-
imum of the magnitude response to be unity. Alternatively, the above criteria are expressible
as

|E(Φ, ω)| ≤ 1 for ω ∈ Ωp ∪ Ωs (12a)

E(Φ, ω) ≤ 0 for ω ∈ Ωp, (12b)

where
E(Φ, ω) = W(ω)[|H(Φ, ejω)| − D(ω)] (12c)

with

D(ω) =

{
1 for ω ∈ Ωp

0 for ω ∈ Ωs
and W(ω) =

{
1/δp for ω ∈ Ωp

1/δs for ω ∈ Ωs.
(12d)
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As the third option for later use, the above magnitude criteria are stated as

0 ≤ 20 log10|H(Φ, ejω)| ≤ −Ap for ω ∈ Ωp (13a)

20 log10|H(Φ, ejω)| ≤ −As for ω ∈ Ωs, (13b)

where

Ap = −20 log10(1 − δp) and As = −20 log10(δs) (13c)

are the admissible positive passband variation and stopband attenuation, respectively. These
criteria will be mainly used in connection of Examples of Section 6 for specifying the magni-
tude criteria for the three filter classes under consideration.
The target in all of the following optimization problems is to find the quantized values of the
adaptor coefficients corresponding to the parameter values included in Φ such that, first, the
coefficient values are expressible in the form of (9) and, second, the number of adders and
subtracters required to implement all the adaptor coefficient is minimized.

4.1 Cascade Connection of LWD Filters
According to the construction of the overall transfer function for these filters in Subsection 2.1
by means of (1), (2a), (2b), (3a), and (3b), the optimization problem is stated in the low-pass

case as follows: Find K, the number of sub-stages, M(k)
0 and M(k)

1 for k = 1, 2, . . . , K, the orders
of the all-pass subfilters, as well as the adjustable parameter vector as given by

Φ =
[
r(1)0 , r(1)1 , . . . , r(1)

L(1)
0 +L(1)

1

, θ
(1)
1 , θ

(1)
2 , . . . , θ

(1)

L(1)
0 +L(1)

1

,

r(2)0 , r(2)1 , . . . , r(2)
L(2)

0 +L(2)
1

, θ
(2)
1 , θ

(2)
2 , . . . , θ

(2)

L(2)
0 +L(2)

1

, . . . ,

r(K)0 , r(K)1 , . . . , r(K)
L(K)

0 +L(K)
1

, θ
(K)
1 , θ

(K)
2 , . . . , θ

(K)
L(K)

0 +L(K)
1

]
,

(14)

in such a way that the criteria given by (12a)–(12d) are met and the above-mentioned target
for the coefficient implementations is achieved.

4.2 Approximately Linear-Phase LWD Filters
In the sequel, when synthesizing approximately linear-phase low-pass LWD filters, in addi-
tion to the magnitude criteria of (12a)–(12d), the phase requirements are stated as follows
(Surma-aho & Saramäki, 1999):

|arg H(Φ, ejω)− τω| ≤ ∆ for ω ∈ Ωp. (15)

Here, arg H(Φ, ejω) denotes the unwrapped phase response of the filter, whereas τ is the
value minimizing the maximum absolute value of arg H(Φ, ejω) − τω on the passband re-
gion Ωp and ∆ is the upper limit for this maximum. Since only a single LWD filter is under
optimization, the adjustable vector reduces to

Φ =
[
r(1)0 , r(1)1 , . . . , r(1)

L(1)
0 +L(1)

1

, θ
(1)
1 , θ

(1)
2 , . . . , θ

(1)

L(1)
0 +L(1)

1

]
. (16)

In this case, the optimization problem is the following: Find M(1)
0 and M(1)

1 , the orders of the
all-pass subfilters, as well as the adjustable parameter vector Φ, as given by (16), in such a

way that in addition to meeting the magnitude criteria of (12a)–(12d), the phase specifications
of (15) are satisfied and the above-mentioned target for the coefficient implementations is
achieved.

4.3 Recursive N th-Band Decimators and Interpolators
If the desired sampling rate conversion factor is N, then the passband region of the decimation
filter is selected as Ωp = [0, ωp] where ωp < π/N. The selection of the stopband region
Ωs depends on whether or not aliasing is allowed into the transition band [ωp, π/N] of the
filter. Due to the properties of recursive Nth-band filters, their stopband region for the above-
specified passband region is inherently restricted to be (Renfors & Saramäki, 1987)

Ωs =
�N/2�⋃

r=1

[
r

2π

N
− ωp, min

(
r

2π

N
+ ωp, π

)]
. (17)

This region has the following properties. First, for N > 3, Ωs is a multiband stopband region
that consist of �N/2� bands such that the first �N/2� − 1 bands are [r2π/N − ωp, r2π/N +
ωp] for r = 1, 2, . . . , �N/2�− 1 and the last band is [π −ωp, π] and [(N − 1)2π/N −ωp, (N −
1)π/N +ωp] for N even and odd, respectively (As a typical example, see Fig. 19 in Subsection
6.3 showing the magnitude response for a finite-precision eighth-band (N = 8) design.). Sec-
ond, for N = 2 and N = 3, Ωs = [π − ωp, π] and Ωs = [2π/3− ωp, 2π/3+ ωp], respectively.
Therefore, first, the lower edge of the first stopband region is located at ω = 2π/N − ωp and,
second, Ωs has for N > 2, in addition to the transition band of width 2(π/N − ωp), don’t
care bands of the same width around ωr = (2r + 1)π/N for r = 1, 2, . . . , �(N + 1)/2� − 1.
The above stopband region guarantees that the aliasing is fully avoidable into the passband
region. If this control is desired to extend onto [0, π/N], then an additional LWD filter can be
implemented after the overall decimation (Renfors & Saramäki, 1987).
This book chapter concentrates on the design of those single-stage and multistage recursive
Nth-band decimators, where this additional LWD filter is excluded. For this purpose, the
following second main characteristics of the recursive Nth-band filters is utilized. If the max-
imum magnitude value of the filter on Ωs is δs, then it is guaranteed that in the minimum
magnitude value on the passband region [0, ωp] is larger than or equal

√
1 − (N − 1)(δs)2

(Renfors & Saramäki, 1987). This implies that for any practical stopband attenuation on Ωs,
the passband variation becomes negligible. Consequently, the design of recursive Nth-band
decimator can concentrate on the stopband region Ωs only. Therefore, the criteria of (11) can
be reduced into the following form:

E(Φ, ω) = |H(Φ, ejω)| ≤ δs for ω ∈ Ωs, (18)

where Ωs is given by (17).
According to the construction of the overall transfer function in the single-stage equivalent in
Subsection 2.3 by means of (5), (6), (8a), (8b), and (8c), the optimization problem is stated as
follows: Find K, the number of sub-stages, N1, N2, . . . , NK , the decimation factors of the sub-

stages, the L(k)
n ’s, the orders of the branch filters, as well as the adjustable parameter vector as
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As the third option for later use, the above magnitude criteria are stated as

0 ≤ 20 log10|H(Φ, ejω)| ≤ −Ap for ω ∈ Ωp (13a)

20 log10|H(Φ, ejω)| ≤ −As for ω ∈ Ωs, (13b)

where

Ap = −20 log10(1 − δp) and As = −20 log10(δs) (13c)

are the admissible positive passband variation and stopband attenuation, respectively. These
criteria will be mainly used in connection of Examples of Section 6 for specifying the magni-
tude criteria for the three filter classes under consideration.
The target in all of the following optimization problems is to find the quantized values of the
adaptor coefficients corresponding to the parameter values included in Φ such that, first, the
coefficient values are expressible in the form of (9) and, second, the number of adders and
subtracters required to implement all the adaptor coefficient is minimized.

4.1 Cascade Connection of LWD Filters
According to the construction of the overall transfer function for these filters in Subsection 2.1
by means of (1), (2a), (2b), (3a), and (3b), the optimization problem is stated in the low-pass

case as follows: Find K, the number of sub-stages, M(k)
0 and M(k)

1 for k = 1, 2, . . . , K, the orders
of the all-pass subfilters, as well as the adjustable parameter vector as given by

Φ =
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in such a way that the criteria given by (12a)–(12d) are met and the above-mentioned target
for the coefficient implementations is achieved.

4.2 Approximately Linear-Phase LWD Filters
In the sequel, when synthesizing approximately linear-phase low-pass LWD filters, in addi-
tion to the magnitude criteria of (12a)–(12d), the phase requirements are stated as follows
(Surma-aho & Saramäki, 1999):

|arg H(Φ, ejω)− τω| ≤ ∆ for ω ∈ Ωp. (15)

Here, arg H(Φ, ejω) denotes the unwrapped phase response of the filter, whereas τ is the
value minimizing the maximum absolute value of arg H(Φ, ejω) − τω on the passband re-
gion Ωp and ∆ is the upper limit for this maximum. Since only a single LWD filter is under
optimization, the adjustable vector reduces to

Φ =
[
r(1)0 , r(1)1 , . . . , r(1)

L(1)
0 +L(1)

1

, θ
(1)
1 , θ

(1)
2 , . . . , θ

(1)

L(1)
0 +L(1)

1

]
. (16)

In this case, the optimization problem is the following: Find M(1)
0 and M(1)

1 , the orders of the
all-pass subfilters, as well as the adjustable parameter vector Φ, as given by (16), in such a

way that in addition to meeting the magnitude criteria of (12a)–(12d), the phase specifications
of (15) are satisfied and the above-mentioned target for the coefficient implementations is
achieved.

4.3 Recursive N th-Band Decimators and Interpolators
If the desired sampling rate conversion factor is N, then the passband region of the decimation
filter is selected as Ωp = [0, ωp] where ωp < π/N. The selection of the stopband region
Ωs depends on whether or not aliasing is allowed into the transition band [ωp, π/N] of the
filter. Due to the properties of recursive Nth-band filters, their stopband region for the above-
specified passband region is inherently restricted to be (Renfors & Saramäki, 1987)

Ωs =
�N/2�⋃

r=1

[
r

2π

N
− ωp, min

(
r

2π

N
+ ωp, π

)]
. (17)

This region has the following properties. First, for N > 3, Ωs is a multiband stopband region
that consist of �N/2� bands such that the first �N/2� − 1 bands are [r2π/N − ωp, r2π/N +
ωp] for r = 1, 2, . . . , �N/2�− 1 and the last band is [π −ωp, π] and [(N − 1)2π/N −ωp, (N −
1)π/N +ωp] for N even and odd, respectively (As a typical example, see Fig. 19 in Subsection
6.3 showing the magnitude response for a finite-precision eighth-band (N = 8) design.). Sec-
ond, for N = 2 and N = 3, Ωs = [π − ωp, π] and Ωs = [2π/3− ωp, 2π/3+ ωp], respectively.
Therefore, first, the lower edge of the first stopband region is located at ω = 2π/N − ωp and,
second, Ωs has for N > 2, in addition to the transition band of width 2(π/N − ωp), don’t
care bands of the same width around ωr = (2r + 1)π/N for r = 1, 2, . . . , �(N + 1)/2� − 1.
The above stopband region guarantees that the aliasing is fully avoidable into the passband
region. If this control is desired to extend onto [0, π/N], then an additional LWD filter can be
implemented after the overall decimation (Renfors & Saramäki, 1987).
This book chapter concentrates on the design of those single-stage and multistage recursive
Nth-band decimators, where this additional LWD filter is excluded. For this purpose, the
following second main characteristics of the recursive Nth-band filters is utilized. If the max-
imum magnitude value of the filter on Ωs is δs, then it is guaranteed that in the minimum
magnitude value on the passband region [0, ωp] is larger than or equal

√
1 − (N − 1)(δs)2

(Renfors & Saramäki, 1987). This implies that for any practical stopband attenuation on Ωs,
the passband variation becomes negligible. Consequently, the design of recursive Nth-band
decimator can concentrate on the stopband region Ωs only. Therefore, the criteria of (11) can
be reduced into the following form:

E(Φ, ω) = |H(Φ, ejω)| ≤ δs for ω ∈ Ωs, (18)

where Ωs is given by (17).
According to the construction of the overall transfer function in the single-stage equivalent in
Subsection 2.3 by means of (5), (6), (8a), (8b), and (8c), the optimization problem is stated as
follows: Find K, the number of sub-stages, N1, N2, . . . , NK , the decimation factors of the sub-

stages, the L(k)
n ’s, the orders of the branch filters, as well as the adjustable parameter vector as
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given by

Φ =
[
r(1)1 , r(1)2 , . . . , r(1)

L(1)
0 +L(1)

1 +···+L(1)
N1−1

,

r(2)1 , r(2)2 , . . . , r(2)
L(2)

0 +L(2)
1 +···+L(2)

N2−1

, . . . ,

r(K)1 , r(K)2 , . . . , r(K)
L(K)

0 +L(K)
1 +···+L(K)

NK−1

]
,

(19)

in such a way that criteria given by (18) are met and the above-mentioned target for the coef-
ficient implementations is achieved.

5. Filter Optimization

The solutions to the three optimization problems stated in the previous section can be found
in a similar manner by using the following three steps. In the first step, a filter with infinite-
precision coefficients is determined in such a way that it exceeds the given frequency-domain
criteria in order to provide some tolerance for coefficient quantization. Then, in the second
step, the smallest and largest values are determined for each adjustable parameter by reop-
timizing the remaining unknowns in the parameter vector in such a manner that the given
specifications are met. This enables one to find the parameter space of the infinite-precision
coefficients including the feasible space where the filter meets the specifications. Finally, the
third step involves finding the filter parameters in this space so that the resulting filter meets
the given criteria with the simplest coefficient representation forms. This strategy is general
but particularly efficient for LWD filters due to the fact that for these filters only the denomi-
nator coefficients of the all-pass sections have to be quantized.
The proposed quantization scheme provides significant advantages over those based on the
use of other existing techniques. First of all, it is always guaranteed that the optimum solution
can be found to the above three optimization problems. Second, the computational workload
to arrive at the optimum finite-precision solution is in most cases significantly smaller than in
other existing techniques.

5.1 Generating the Initial Infinite-Precision Solution
In many cases, finding a good initial solution is not trivial as it implies a good understanding
and characterization of the problem. Furthermore, for each problem at hand the way of gen-
erating the start-up solution is very different. If there is a systematic approach for finding an
initial solution being close to the optimum one, then the above-described three-step procedure
gives in most cases more quickly a solution that is better than those obtained, e.g., by using
simulated annealing or genetic algorithms.

5.1.1 Cascade connection of LWD filters
The design of an initial conventional LWD filter for further optimization can be carried out
by, first, using an appropriate classical analog-filter approximation and, then, converting the
resulting continuous-time transfer function into a desired discrete-time transfer function (An-
toniou, 1993; Rabiner & Gold, 1975; Schüßler, 2010). Another approach for designing an initial
filter is to use explicit formulas developed directly for digital filters in (Gazsi, 1985). It is well
known that the odd-order elliptic filter is the most selective low-pass or high-pass filter be-
ing implementable as a parallel connection of two all-pass filters [see, e.g., (Gazsi, 1985)]. For
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Fig. 7. Alternating distribution for the poles of a prototype filter among the two all-pass filters
A0(z) and A1(z) for a seventh-order low-pass filter with ωp = 0.4π, ωs = 0.5π, Ap = 0.2 dB
(δp = 0.0228), and As = 60 dB (δs = 10−3).

conventional low-pass, high-pass, band-pass and, band-stop criteria, the order of an elliptic
filter meeting the given specifications can be estimated using the well-known approximation
formulas (Antoniou, 1993; Rabiner & Gold, 1975; Schüßler, 2010).
Since the real pole and the complex-conjugate pole pairs of the all-pass filters for low-pass and
high-pass designs have the real zero and complex-conjugate zero pairs in conjugate reciprocal
positions (Antoniou, 1993; Schüßler, 2010), the poles of the designed filter unambiguously
determine the all-pass filters. After knowing the poles of the filter, the problem is to implement
the overall transfer function in such a way that the poles are properly shared between the two
all-pass sections A0(z) and A1(z). If the poles are distributed in the low-pass case in a regular
manner, then A0(z) can be selected to realize the real pole, the second innermost complex-
conjugate pole pair, the fourth innermost complex-conjugate pole pair and so on, whereas
A1(z) realizes the remaining poles (Gazsi, 1985). For a very complicated pole distribution, the
procedure described in (Saramäki, 1985) can be used for sharing the poles between A0(z) and
A1(z). The alternating distribution of the poles among the two all-pass filters for a seventh-
order elliptic prototype filter is illustrated in Fig. 7.
The above discussion applies directly to a single LWD filter. For the cascades of low-order
LWD filters, in turn, it has turned out to be advantageous in most cases to select all the

A(k)
0 (z)’s and the A(k)

1 (z)’s to be of the same order, respectively. In this case, the starting
point filter for further optimization can be determined by using several identical copies of
the same subfilter. For K identical copies of the same subfilter, the passband and stopband
ripples for this subfilter should be approximately equal to δp/K and K

√
δs, respectively. There

is clearly a trade-off between K, the number of subfilters, and the order of the subfilter; the
higher is the value of K, the lower is the order of the subfilter. However, since the subfilter
order is restricted to be an odd integer, there are only a few practical combinations for the
subfilter order and K. It is not necessary for the subfilter being an odd-order elliptic filter to
exactly meet the ripple requirements. This is due to the fact that further optimization makes
the subfilters different and simultaneously improves the overall filter performance.
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given by

Φ =
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1 +···+L(1)
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, . . . ,
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]
,

(19)

in such a way that criteria given by (18) are met and the above-mentioned target for the coef-
ficient implementations is achieved.

5. Filter Optimization

The solutions to the three optimization problems stated in the previous section can be found
in a similar manner by using the following three steps. In the first step, a filter with infinite-
precision coefficients is determined in such a way that it exceeds the given frequency-domain
criteria in order to provide some tolerance for coefficient quantization. Then, in the second
step, the smallest and largest values are determined for each adjustable parameter by reop-
timizing the remaining unknowns in the parameter vector in such a manner that the given
specifications are met. This enables one to find the parameter space of the infinite-precision
coefficients including the feasible space where the filter meets the specifications. Finally, the
third step involves finding the filter parameters in this space so that the resulting filter meets
the given criteria with the simplest coefficient representation forms. This strategy is general
but particularly efficient for LWD filters due to the fact that for these filters only the denomi-
nator coefficients of the all-pass sections have to be quantized.
The proposed quantization scheme provides significant advantages over those based on the
use of other existing techniques. First of all, it is always guaranteed that the optimum solution
can be found to the above three optimization problems. Second, the computational workload
to arrive at the optimum finite-precision solution is in most cases significantly smaller than in
other existing techniques.

5.1 Generating the Initial Infinite-Precision Solution
In many cases, finding a good initial solution is not trivial as it implies a good understanding
and characterization of the problem. Furthermore, for each problem at hand the way of gen-
erating the start-up solution is very different. If there is a systematic approach for finding an
initial solution being close to the optimum one, then the above-described three-step procedure
gives in most cases more quickly a solution that is better than those obtained, e.g., by using
simulated annealing or genetic algorithms.

5.1.1 Cascade connection of LWD filters
The design of an initial conventional LWD filter for further optimization can be carried out
by, first, using an appropriate classical analog-filter approximation and, then, converting the
resulting continuous-time transfer function into a desired discrete-time transfer function (An-
toniou, 1993; Rabiner & Gold, 1975; Schüßler, 2010). Another approach for designing an initial
filter is to use explicit formulas developed directly for digital filters in (Gazsi, 1985). It is well
known that the odd-order elliptic filter is the most selective low-pass or high-pass filter be-
ing implementable as a parallel connection of two all-pass filters [see, e.g., (Gazsi, 1985)]. For
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Fig. 7. Alternating distribution for the poles of a prototype filter among the two all-pass filters
A0(z) and A1(z) for a seventh-order low-pass filter with ωp = 0.4π, ωs = 0.5π, Ap = 0.2 dB
(δp = 0.0228), and As = 60 dB (δs = 10−3).

conventional low-pass, high-pass, band-pass and, band-stop criteria, the order of an elliptic
filter meeting the given specifications can be estimated using the well-known approximation
formulas (Antoniou, 1993; Rabiner & Gold, 1975; Schüßler, 2010).
Since the real pole and the complex-conjugate pole pairs of the all-pass filters for low-pass and
high-pass designs have the real zero and complex-conjugate zero pairs in conjugate reciprocal
positions (Antoniou, 1993; Schüßler, 2010), the poles of the designed filter unambiguously
determine the all-pass filters. After knowing the poles of the filter, the problem is to implement
the overall transfer function in such a way that the poles are properly shared between the two
all-pass sections A0(z) and A1(z). If the poles are distributed in the low-pass case in a regular
manner, then A0(z) can be selected to realize the real pole, the second innermost complex-
conjugate pole pair, the fourth innermost complex-conjugate pole pair and so on, whereas
A1(z) realizes the remaining poles (Gazsi, 1985). For a very complicated pole distribution, the
procedure described in (Saramäki, 1985) can be used for sharing the poles between A0(z) and
A1(z). The alternating distribution of the poles among the two all-pass filters for a seventh-
order elliptic prototype filter is illustrated in Fig. 7.
The above discussion applies directly to a single LWD filter. For the cascades of low-order
LWD filters, in turn, it has turned out to be advantageous in most cases to select all the

A(k)
0 (z)’s and the A(k)

1 (z)’s to be of the same order, respectively. In this case, the starting
point filter for further optimization can be determined by using several identical copies of
the same subfilter. For K identical copies of the same subfilter, the passband and stopband
ripples for this subfilter should be approximately equal to δp/K and K

√
δs, respectively. There

is clearly a trade-off between K, the number of subfilters, and the order of the subfilter; the
higher is the value of K, the lower is the order of the subfilter. However, since the subfilter
order is restricted to be an odd integer, there are only a few practical combinations for the
subfilter order and K. It is not necessary for the subfilter being an odd-order elliptic filter to
exactly meet the ripple requirements. This is due to the fact that further optimization makes
the subfilters different and simultaneously improves the overall filter performance.
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5.1.2 Approximately linear-phase LWD filters
For these low-pass LWD filters, there exist no closed-form solution for satisfying both the
magnitude criteria of (12a)–(12d) and the phase criteria of (15). Therefore, these filters have
to be designed using optimization techniques. An efficient systematic algorithm for design-
ing an initial solution for these filters has been proposed in (Surma-aho, 1997; Surma-aho &
Saramäki, 1999). This design scheme consists of two basic steps. The first step involves finding
in a simple straightforward manner a good suboptimal solution that determines Φ so that ∆ in
(15) has a reasonably small value subject to the magnitude specifications. In the second step,
this solution is then used as an initial filter for further optimization carried out with the aid
of a constrained optimization for minimizing the value of ∆ in (15) subject to the magnitude
criteria.

5.1.3 Recursive N th-band decimators and interpolators
The initial infinite-precision solutions for the recursive Nth-band filter in both the single-
stage and multistage implementations can be properly synthesized by utilizing the synthesis
schemes described in (Renfors & Saramäki, 1987). The design of single-stage filters relies on
the properties of these filters and enables one to significantly reduce the number of the origi-
nal unknowns. Furthermore, the remaining unknowns can be found by means of an efficient
Remez-type algorithm. As a result, solutions being very close to the optimized solutions can
be achieved in a very fast and reliable manner in comparison with other existing very time-
consuming optimization techniques, which are based on optimizing the original unknowns
and do not necessarily guarantee the arrival at the optimized solution.
The multistage design, in turn, counts on the fact that each stage, as has been observed in
(Renfors & Saramäki, 1987), has its own predetermined frequency range to take care of in
order to provide the desired magnitude response for the overall design. Based on this fact,
the simultaneous design of the sub-stages can be conveniently performed by iteratively de-
termining them such that they provide for the overall filter as high attenuation as possible in
their predetermined frequency ranges. This iteration is continued until the successive overall
solutions become practically the same. What is left is to determine the minimum filter orders
to meet the given specifications.

5.2 Optimization of Infinite-Precision Filters
The optimization algorithm is based on the following observation. Finding the smallest and
largest values for each adjustable parameter by reoptimizing the remaining unknowns in the
parameter vector so that the given criteria are still met enables one to determine a parameter
space including the feasible space where the filter specifications are satisfied. After figuring
out this space, all that is needed is to check whether in this space there exist the desired discrete
values for the given coefficient representation form.

5.2.1 Cascade connection of LWD filters
For cascaded LWD filters, the parameter space of the infinite-precision coefficients can be
determined as follows. For each complex-conjugate pole pair, the smallest and largest values
for both the radius and the angle are determined so that by reoptimizing the locations of the
remaining poles the given overall magnitude criteria of (12a)–(12d) can still be met. For the
real pole, the smallest and largest values for the radius are found in the same manner.
The above procedure gives for the upper-half-plane pole of each complex-conjugate pole pair
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Fig. 8. Typical search spaces for the poles when three powers of two with seven fractional bits
(R = 3 and PR = 7) are used for the adaptor coefficients. (a) Upper-half-plane pole for the
complex-conjugate pole pair. (b) Real pole.

R(min) ≤ R ≤ R(max) and Θ(min) ≤ Θ ≤ Θ(max), as illustrated in Fig. 8(a). The crosses
numbered by 1, 2, 3, and 4 correspond, respectively, to the points where the smallest radius
R(min), the largest radius R(max), the smallest angle Θ(min), and the largest angle Θ(max) are
reached. Inside this region, there is the feasible region, given by the dashed line in Fig. 8(a),
where the pole can be located such that by relocating the remaining poles the given overall

criteria are still met by using an infinite-precision arithmetic. For each real pole r(k)0 for k =

1, 2, . . . , K, there exists the corresponding region R(min)
0 ≤ R ≤ R(max)

0 that is simultaneously

the feasible region. In Fig. 8(b), the crosses numbered by 5 and 6 indicate R(min)
0 and R(max)

0 ,
respectively.
For the complex-conjugate pole pairs, the larger region is used because it can be found very
quickly by applying only four times the algorithm to be described next. For the real pole,
there is a need to use this algorithm only twice. Hence, in order to find the above-mentioned
regions for all the poles of the low-pass transfer function, as given by (1), (2a), (2b), (3a), and

(3b), there are for each of the K sub-stages 2 + 4(L(k)
0 + L(k)

1 ) problems of the following form:
Find the adjustable parameter vector Φ to minimize ψ subject to the conditions of (12a)–(12d).

For these problems, ψ is r(k)0 and −r(k)0 for the real pole, whereas for the complex-conjugate

pole pairs, ψ is selected to be r(k)� , −r(k)� , θ
(k)
� , and −θ

(k)
� for � = 1, 2, . . . , L(k)

0 + L(k)
1 .
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5.1.2 Approximately linear-phase LWD filters
For these low-pass LWD filters, there exist no closed-form solution for satisfying both the
magnitude criteria of (12a)–(12d) and the phase criteria of (15). Therefore, these filters have
to be designed using optimization techniques. An efficient systematic algorithm for design-
ing an initial solution for these filters has been proposed in (Surma-aho, 1997; Surma-aho &
Saramäki, 1999). This design scheme consists of two basic steps. The first step involves finding
in a simple straightforward manner a good suboptimal solution that determines Φ so that ∆ in
(15) has a reasonably small value subject to the magnitude specifications. In the second step,
this solution is then used as an initial filter for further optimization carried out with the aid
of a constrained optimization for minimizing the value of ∆ in (15) subject to the magnitude
criteria.

5.1.3 Recursive N th-band decimators and interpolators
The initial infinite-precision solutions for the recursive Nth-band filter in both the single-
stage and multistage implementations can be properly synthesized by utilizing the synthesis
schemes described in (Renfors & Saramäki, 1987). The design of single-stage filters relies on
the properties of these filters and enables one to significantly reduce the number of the origi-
nal unknowns. Furthermore, the remaining unknowns can be found by means of an efficient
Remez-type algorithm. As a result, solutions being very close to the optimized solutions can
be achieved in a very fast and reliable manner in comparison with other existing very time-
consuming optimization techniques, which are based on optimizing the original unknowns
and do not necessarily guarantee the arrival at the optimized solution.
The multistage design, in turn, counts on the fact that each stage, as has been observed in
(Renfors & Saramäki, 1987), has its own predetermined frequency range to take care of in
order to provide the desired magnitude response for the overall design. Based on this fact,
the simultaneous design of the sub-stages can be conveniently performed by iteratively de-
termining them such that they provide for the overall filter as high attenuation as possible in
their predetermined frequency ranges. This iteration is continued until the successive overall
solutions become practically the same. What is left is to determine the minimum filter orders
to meet the given specifications.

5.2 Optimization of Infinite-Precision Filters
The optimization algorithm is based on the following observation. Finding the smallest and
largest values for each adjustable parameter by reoptimizing the remaining unknowns in the
parameter vector so that the given criteria are still met enables one to determine a parameter
space including the feasible space where the filter specifications are satisfied. After figuring
out this space, all that is needed is to check whether in this space there exist the desired discrete
values for the given coefficient representation form.

5.2.1 Cascade connection of LWD filters
For cascaded LWD filters, the parameter space of the infinite-precision coefficients can be
determined as follows. For each complex-conjugate pole pair, the smallest and largest values
for both the radius and the angle are determined so that by reoptimizing the locations of the
remaining poles the given overall magnitude criteria of (12a)–(12d) can still be met. For the
real pole, the smallest and largest values for the radius are found in the same manner.
The above procedure gives for the upper-half-plane pole of each complex-conjugate pole pair
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Fig. 8. Typical search spaces for the poles when three powers of two with seven fractional bits
(R = 3 and PR = 7) are used for the adaptor coefficients. (a) Upper-half-plane pole for the
complex-conjugate pole pair. (b) Real pole.

R(min) ≤ R ≤ R(max) and Θ(min) ≤ Θ ≤ Θ(max), as illustrated in Fig. 8(a). The crosses
numbered by 1, 2, 3, and 4 correspond, respectively, to the points where the smallest radius
R(min), the largest radius R(max), the smallest angle Θ(min), and the largest angle Θ(max) are
reached. Inside this region, there is the feasible region, given by the dashed line in Fig. 8(a),
where the pole can be located such that by relocating the remaining poles the given overall

criteria are still met by using an infinite-precision arithmetic. For each real pole r(k)0 for k =

1, 2, . . . , K, there exists the corresponding region R(min)
0 ≤ R ≤ R(max)

0 that is simultaneously

the feasible region. In Fig. 8(b), the crosses numbered by 5 and 6 indicate R(min)
0 and R(max)

0 ,
respectively.
For the complex-conjugate pole pairs, the larger region is used because it can be found very
quickly by applying only four times the algorithm to be described next. For the real pole,
there is a need to use this algorithm only twice. Hence, in order to find the above-mentioned
regions for all the poles of the low-pass transfer function, as given by (1), (2a), (2b), (3a), and

(3b), there are for each of the K sub-stages 2 + 4(L(k)
0 + L(k)

1 ) problems of the following form:
Find the adjustable parameter vector Φ to minimize ψ subject to the conditions of (12a)–(12d).

For these problems, ψ is r(k)0 and −r(k)0 for the real pole, whereas for the complex-conjugate

pole pairs, ψ is selected to be r(k)� , −r(k)� , θ
(k)
� , and −θ

(k)
� for � = 1, 2, . . . , L(k)

0 + L(k)
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In order to guarantee the stability of the resulting filters and to prevent the poles from chang-
ing their ordering, e.g., to inhibit the outermost complex-conjugate pole pair from becoming
the second outermost complex-conjugate pole pair when minimizing its radius, the following
additional constraints:

− 1 ≤ r(1)0 ≤ r(2)0 ≤ · · · ≤ r(K)0 < 1 (20a)

and

0 ≤ r(1)1 ≤ r(2)1 ≤ · · · ≤ r(K)1 ≤ r(1)
L(1)

0 +1
≤ r(2)

L(2)
0 +1

≤ · · · ≤ r(K)
L(K)

0 +1

≤ r(1)2 ≤ r(2)2 ≤ · · · ≤ r(K)2 ≤ r(1)
L(1)

0 +2
≤ r(2)

L(2)
0 +2

≤ · · · ≤ r(K)
L(K)

0 +2
≤ · · ·

≤ r(1)
L(1)

0

≤ r(2)
L(2)

0

≤ · · · ≤ r(K)
L(K)

0

≤ r(1)
L(1)

0 +L(1)
1

≤ r(2)
L(2)

0 +L(2)
1

≤ · · · ≤ r(K)
L(K)

0 +L(K)
1

< 1 (20b)

are required.2

For later use, Φ(k)
1 and Φ(k)

2 denote the solutions with minimized r(k)0 and −r(k)0 (maximized

r(k)0 ), whereas

Φ(k)
2+�

, Φ(k)
2+(L(k)

0 +L(k)
1 )+�

, Φ(k)
2+2(L(k)

0 +L(k)
1 )+�

, and Φ(k)
2+3(L(k)

0 +L(k)
1 )+�

for � = 1, 2, . . . , L(k)
0 + L(k)

1 denote the solutions with the minimized r(k)� , the minimized −r(k)�

(maximized r(k)� ), the minimized Θ(k)
� , and the minimized −Θ(k)

� (maximized Θ(k)
� ), respec-

tively.
To solve these problems, the passband and stopband regions in the magnitude criteria of
(12a)–(12d) are discretized into the frequency points ωi ∈ Ωp for i = 1, 2, . . . , Ξp and ωi ∈ Ωs
for i = Ξp + 1, Ξp + 2, . . . , Ξp + Ξs, which gives rise to the following discretized criteria:

|E(Φ, ωi)| − 1 ≤ 0 for i = 1, 2, . . . , Ξp + Ξs (21a)

and

E(Φ, ωi) ≤ 0 for i = 1, 2, . . . , Ξp. (21b)

The resulting discrete minimization problems are to find Φ to minimize ψ subject to the con-
straints of (20a) and (20b) and the constraints of (21a) and (21b). Here, ψ is one of the above-

mentioned 2 + 4(L(k)
0 + L(k)

1 ) problems for each of the K sub-stages, that is, the total number

2 In these constraints, it is assumed that the following two facts are valid. First, the transfer function,
as given by (1), (2a), (2b), (3a), and (3b), is either a low-pass or high-pass filter design. Second, the

orders of K subfilters, as given by 2(L(k)
0 + L(k)

1 ) + 1 for k = 1, 2, . . . , K are the same, denoted by 2L̃ + 1
so that each stage has L̃ complex-conjugate pole-pairs. Under these assumptions, (20a) means that the
radius of the real pole for the (k + 1)th stage is larger than that for the kth stage for k = 1, 2, . . . , K − 1.
According to (20b), the same is true when considering the radii of the innermost complex-conjugate
pole pairs included in the K sub-stages. Furthermore, this fact is valid up to the L̃th innermost pole
pairs (that are simultaneously the outmost pole pairs) in these sub-stages. In addition, (20b) implies
that the radius of the second innermost complex-conjugate pole pair in the first stage is larger than the
radius of the innermost complex-conjugate pole pair in the last stage and the same constraint is true up
to the L̃th innermost pole pairs.

of problems is
K

∑
k=1

[
2 + 4(L(k)

0 + L(k)
1 )

]
.

The above-mentioned problems can be conveniently solved by using the second algorithm
of Dutta and Vidyasagar (Dutta & Vidyasagar, 1977) or the function fmincon from the op-
timization toolbox provided by MathWorks, Inc. (Coleman et al., 1999). For more detail, see
(Saramäki & Yli-Kaakinen, 2002; Yli-Kaakinen, 2002; Yli-Kaakinen & Saramäki, 2007).
For transfer functions, as given by (1), (2a), (2b), (3a), and (3b), the key goal is to quantize

the adaptor coefficients γ
(k)
� for � = 0, 1, . . . , 2(L(k)

0 + L(k)
1 ) and for k = 1, 2, . . . , K to achieve

the optimization target stated in Section 4. It can be shown that the larger region including
the feasible region, where LWD filter meets the given criteria, can be determined, by means

of the above solutions Φ(k)
p for p = 1, 2, . . . , 2 + 4(L(k)

0 + L(k)
1 ) and for k = 1, 2, . . . , K, by

specifying the minimum and maximum values of γ
(k)
� for � = 0, 1, . . . , 2(L(k)

0 + L(k)
1 ) and for

k = 1, 2, . . . , K as follows:
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(k)(min)
� = min
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0 +L(k)

1 )

{γ
(k)
�,p} and γ

(k)(max)
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p=1,2,...,2+4(L(k)
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1 )

{γ
(k)
�,p}, (22)

where γ
(k)
�,p denotes the value of γ

(k)
� determined according to the pth solution, Φ(k)

p , of the
above-mentioned optimization problems.
As shown in Fig. 8(a), the search space determined in the above manner by the adaptor coeffi-
cient values for the complex-conjugate pole pairs is significantly larger than the corresponding
original space found in terms of the radius and the angle for the pole pair under consideration.
When concentrating in the sequel on determining desired finite-precision values for the adap-
tor coefficients, the use of the smaller search space will be utilized in a manner to be described
later on in Subsection 5.3.4.

5.2.2 Approximately linear-phase LWD Filters
When determining the smallest and largest radius of the real pole and the smallest and largest
values of the radius and the angle for each of the complex-conjugate pole pairs for the approx-
imately linear-phase LWD filters, there are two main differences compared to the cascaded
LWD filters. First, the overall filter is constructed as a single stage, that is, K = 1. Therefore,
the constraints of (20a) and (20b) reduce, in the low-pass case, to the constraints that all the
radii are less than unity and the complex-conjugate pole pairs are ordered in terms of their
radii such that their ordering remains intact. Second, in addition to the above-mentioned con-
straints on the radii of the poles and the magnitude-response constraints of (21a) and (21b),
the following phase-response constraints:

|arg H(Φ, ejωi )− τωi| − ∆ ≤ 0 for i = 1, 2, . . . , Ξp (23)

should be included. These constraints are obtained from the original phase response con-
straint, as given by (15) in Subsection 4.2, by dicretizing the passband region into the fre-
quency points ωi ∈ Ωp for i = 1, 2, . . . , Ξp in a manner similar to that performed earlier for
the magnitude criteria.



A Systematic Algorithm for the Synthesis of Multiplierless Lattice Wave Digital Filters 273

In order to guarantee the stability of the resulting filters and to prevent the poles from chang-
ing their ordering, e.g., to inhibit the outermost complex-conjugate pole pair from becoming
the second outermost complex-conjugate pole pair when minimizing its radius, the following
additional constraints:

− 1 ≤ r(1)0 ≤ r(2)0 ≤ · · · ≤ r(K)0 < 1 (20a)
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To solve these problems, the passband and stopband regions in the magnitude criteria of
(12a)–(12d) are discretized into the frequency points ωi ∈ Ωp for i = 1, 2, . . . , Ξp and ωi ∈ Ωs
for i = Ξp + 1, Ξp + 2, . . . , Ξp + Ξs, which gives rise to the following discretized criteria:

|E(Φ, ωi)| − 1 ≤ 0 for i = 1, 2, . . . , Ξp + Ξs (21a)

and

E(Φ, ωi) ≤ 0 for i = 1, 2, . . . , Ξp. (21b)

The resulting discrete minimization problems are to find Φ to minimize ψ subject to the con-
straints of (20a) and (20b) and the constraints of (21a) and (21b). Here, ψ is one of the above-

mentioned 2 + 4(L(k)
0 + L(k)

1 ) problems for each of the K sub-stages, that is, the total number

2 In these constraints, it is assumed that the following two facts are valid. First, the transfer function,
as given by (1), (2a), (2b), (3a), and (3b), is either a low-pass or high-pass filter design. Second, the
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so that each stage has L̃ complex-conjugate pole-pairs. Under these assumptions, (20a) means that the
radius of the real pole for the (k + 1)th stage is larger than that for the kth stage for k = 1, 2, . . . , K − 1.
According to (20b), the same is true when considering the radii of the innermost complex-conjugate
pole pairs included in the K sub-stages. Furthermore, this fact is valid up to the L̃th innermost pole
pairs (that are simultaneously the outmost pole pairs) in these sub-stages. In addition, (20b) implies
that the radius of the second innermost complex-conjugate pole pair in the first stage is larger than the
radius of the innermost complex-conjugate pole pair in the last stage and the same constraint is true up
to the L̃th innermost pole pairs.
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The above-mentioned problems can be conveniently solved by using the second algorithm
of Dutta and Vidyasagar (Dutta & Vidyasagar, 1977) or the function fmincon from the op-
timization toolbox provided by MathWorks, Inc. (Coleman et al., 1999). For more detail, see
(Saramäki & Yli-Kaakinen, 2002; Yli-Kaakinen, 2002; Yli-Kaakinen & Saramäki, 2007).
For transfer functions, as given by (1), (2a), (2b), (3a), and (3b), the key goal is to quantize
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the feasible region, where LWD filter meets the given criteria, can be determined, by means

of the above solutions Φ(k)
p for p = 1, 2, . . . , 2 + 4(L(k)

0 + L(k)
1 ) and for k = 1, 2, . . . , K, by

specifying the minimum and maximum values of γ
(k)
� for � = 0, 1, . . . , 2(L(k)

0 + L(k)
1 ) and for

k = 1, 2, . . . , K as follows:

γ
(k)(min)
� = min

p=1,2,...,2+4(L(k)
0 +L(k)

1 )

{γ
(k)
�,p} and γ

(k)(max)
� = max

p=1,2,...,2+4(L(k)
0 +L(k)

1 )

{γ
(k)
�,p}, (22)

where γ
(k)
�,p denotes the value of γ

(k)
� determined according to the pth solution, Φ(k)

p , of the
above-mentioned optimization problems.
As shown in Fig. 8(a), the search space determined in the above manner by the adaptor coeffi-
cient values for the complex-conjugate pole pairs is significantly larger than the corresponding
original space found in terms of the radius and the angle for the pole pair under consideration.
When concentrating in the sequel on determining desired finite-precision values for the adap-
tor coefficients, the use of the smaller search space will be utilized in a manner to be described
later on in Subsection 5.3.4.

5.2.2 Approximately linear-phase LWD Filters
When determining the smallest and largest radius of the real pole and the smallest and largest
values of the radius and the angle for each of the complex-conjugate pole pairs for the approx-
imately linear-phase LWD filters, there are two main differences compared to the cascaded
LWD filters. First, the overall filter is constructed as a single stage, that is, K = 1. Therefore,
the constraints of (20a) and (20b) reduce, in the low-pass case, to the constraints that all the
radii are less than unity and the complex-conjugate pole pairs are ordered in terms of their
radii such that their ordering remains intact. Second, in addition to the above-mentioned con-
straints on the radii of the poles and the magnitude-response constraints of (21a) and (21b),
the following phase-response constraints:

|arg H(Φ, ejωi )− τωi| − ∆ ≤ 0 for i = 1, 2, . . . , Ξp (23)

should be included. These constraints are obtained from the original phase response con-
straint, as given by (15) in Subsection 4.2, by dicretizing the passband region into the fre-
quency points ωi ∈ Ωp for i = 1, 2, . . . , Ξp in a manner similar to that performed earlier for
the magnitude criteria.
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5.2.3 Recursive N th-band decimators and interpolators
For recursive Nth-band decimators and interpolators, there are also two differences compared
to the cascaded LWD filters when determining the parameter space of the infinite-precision
coefficients. First, the transfer functions, as given by (8a), (8b), and (8c), have only real poles

and, therefore, the number of problems reduces to 2 ∑Nk−1
n=0 L(k)

n for each of the K sub-stages.

For these problems, ψ is r(k)� and −r(k)� for � = 1, 2, . . . , L(k)
0 + L(k)

1 + · · · + L(k)
Nk−1 and for

k = 1, 2, . . . , K. In this case,

Φ(k)
� and Φ(k)

L(k)
0 +L(k)

1 +···+L(k)
Nk−1+�

for � = 1, 2, . . . , L(k)
0 + L(k)

1 + · · ·+ L(k)
Nk−1 denote the solutions with minimized r(k)� and −r(k)�

(maximized r(k)� ), respectively. The above procedure gives for each real pole r(k)� for � =

1, 2, . . . , L(k)
0 + L(k)

1 + · · ·+ L(k)
NK−1 and for k = 1, 2, . . . , K, the region r(k)(min)

� ≤ r(k)� ≤ r(k)(max)
�

that is directly the feasible region, where the pole can be located such that by relocating the re-
maining poles the given overall criteria are still met by using the infinite-precision arithmetic.
Second, the constraints of (20a) and (20b) for the radii of the real poles and for the complex-
conjugate pole pairs are replaced by the following constraints for radii of the real poles:

−1 ≤ r(k)1 ≤ r(k)
L(k)

0 +1
≤ · · · ≤ r(k)

L(k)
0 +L(k)

1 +···+L(k)
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≤ · · · ≤
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1

≤ · · · ≤ r(k)
L(k)

0 +L(k)
1 +···+L(k)

N1−1

≤ 0, (24)

for k = 1, 2 . . . , K.3

3 In this constraint, each of the K sub-stages is considered independently of each other due to their own
predetermined frequency-response shaping responsibilities in providing the desired overall magnitude
response (Renfors & Saramäki, 1987) in contrast to the cascaded LWD filters, where all the filter stages
generate as joint effort the overall response in the same passband and stopband regions. For the kth
stage for k = 1, 2, . . . , K, the above constraint simply means the following four experimentally observed
facts. First, all the poles are located on the negative real axis. Second, if the overall number of adjustable
poles in the kth stage is T1 Nk + T2, where Nk is the decimation factor after this stage and T1 and T2 are

integers, then the nth all-pass filter transfer function A(k)
n (z), which is involved in generating the kth

stage in the single-stage equivalent in Section 2.3 according to (8a), (8b), and (8c), contains T1 + 1 and
T1 adjustable real pole locations for n = 0, 1, . . . , T2 − 1 and for n = T2, T2 + 1, . . . , Nk − 1, respectively.
Third, when considering the radii of the outermost poles in the above-mentioned all-pass filter transfer
functions for n = 0, 1, . . . , T2 − 1, the radius of the nth transfer function is less than that of (n + 1)th
transfer function. Fourth, if T1 > 1 and it is assumed that the outermost real pole is absent for n =
T2, T2 + 1, . . . , Nk − 1, then the following two additional facts are true. First, the above-mentioned
third fact is true starting from the second outermost real poles up to the innermost real pole for n =
0, 1, . . . , Nk − 1. Second, if the location of the pole of the last transfer function is more innermost than
that of first transfer function, then its radius is smaller.

5.3 Optimization of Finite-Precision Filters
It has been experimentally proved that the above-defined parameter space for each of three fil-
ter types under consideration forms a space including the feasible space where the filter spec-
ifications are satisfied. After finding this larger space, all that is needed is to check whether in
this space there exist combinations of the discrete pole positions with which the given overall
criteria are met.

5.3.1 Cascade connection of LWD filters
For cascade connections of low-order LWD filters, this search can be conveniently accom-

plished by first finding the sets of powers-of-two numbers Γ(k)
� for � = 0, 1, . . . , 2(L(k)

0 + L(k)
1 )

and for k = 1, 2, . . . , K between the smallest and largest values of each adaptor coefficient, that
is, by determining

{
Γ(k)
� ∈ POT(R,PR)

∣∣ γ
(k)(min)
� ≤ Γ� ≤ γ

(k)(max)
�

}
. (25)

for � = 0, 1, . . . , 2(L(k)
0 + L(k)

1 ) and for k = 1, 2, . . . , K. Here, POT(R,PR) denotes the space of the
powers-of-two numbers for R, the given maximum number of power-of-two terms, and PR,

the maximum number of fractional bits [cf. (9)]. Denote by S(k)
� the number of powers-of-two

values between γ
(k)(min)
� and γ

(k)(max)
� . Furthermore, denote by Γ(k)(s)

� for s = 1, 2, . . . , S(k)
� the

sth existing discrete value between these smallest and largest values.

The magnitude response is then evaluated for each combination of the Γ(k)(s)
� for � =

0, 1, . . . , 2(L(k)
0 + L(k)

1 ) and s = 1, 2, . . . , S(k)
� to check whether the filter meets the given specifi-

cations. Hence, the number of discrete coefficient value combinations to be considered is

K

∏
k=1

2(L(k)
0 +L(k)

1 )

∏
�=0

S(k)
� . (26)

5.3.2 Approximately linear-phase LWD Filters
For approximately linear-phase LWD filters, the phase response is evaluated for all the so-
lutions satisfying the magnitude specifications to make sure that the finite-wordlength filter
meets the given overall criteria, that is, also the phase criteria of (23).

5.3.3 Recursive N th-band decimators and interpolators
For multistage decimators and interpolators, this finite-precision search can be performed
independently for each filter stage as in the single-stage equivalent described in Subsection
2.3, all the filter stages have, according to the discussion in (Renfors & Saramäki, 1987), their
own roles in providing the given attenuation in the predetermined stopband regions. This
considerably reduces the overall optimization time. Furthermore, having only real poles in the
overall implementation significantly reduces the overall finite-precision optimization time.

5.3.4 Finite wordlength considerations
The proper values for R and PR are selected to be the smallest values for which there exist the
discrete coefficient values between the smallest and largest values for the adaptor coefficients.
If no solution satisfying the prescribed criteria are found for the predetermined discrete co-
efficient representation form, then another less stringent coefficient representation has to be
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5.2.3 Recursive N th-band decimators and interpolators
For recursive Nth-band decimators and interpolators, there are also two differences compared
to the cascaded LWD filters when determining the parameter space of the infinite-precision
coefficients. First, the transfer functions, as given by (8a), (8b), and (8c), have only real poles

and, therefore, the number of problems reduces to 2 ∑Nk−1
n=0 L(k)

n for each of the K sub-stages.

For these problems, ψ is r(k)� and −r(k)� for � = 1, 2, . . . , L(k)
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NK−1 and for k = 1, 2, . . . , K, the region r(k)(min)

� ≤ r(k)� ≤ r(k)(max)
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that is directly the feasible region, where the pole can be located such that by relocating the re-
maining poles the given overall criteria are still met by using the infinite-precision arithmetic.
Second, the constraints of (20a) and (20b) for the radii of the real poles and for the complex-
conjugate pole pairs are replaced by the following constraints for radii of the real poles:
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for k = 1, 2 . . . , K.3

3 In this constraint, each of the K sub-stages is considered independently of each other due to their own
predetermined frequency-response shaping responsibilities in providing the desired overall magnitude
response (Renfors & Saramäki, 1987) in contrast to the cascaded LWD filters, where all the filter stages
generate as joint effort the overall response in the same passband and stopband regions. For the kth
stage for k = 1, 2, . . . , K, the above constraint simply means the following four experimentally observed
facts. First, all the poles are located on the negative real axis. Second, if the overall number of adjustable
poles in the kth stage is T1 Nk + T2, where Nk is the decimation factor after this stage and T1 and T2 are

integers, then the nth all-pass filter transfer function A(k)
n (z), which is involved in generating the kth

stage in the single-stage equivalent in Section 2.3 according to (8a), (8b), and (8c), contains T1 + 1 and
T1 adjustable real pole locations for n = 0, 1, . . . , T2 − 1 and for n = T2, T2 + 1, . . . , Nk − 1, respectively.
Third, when considering the radii of the outermost poles in the above-mentioned all-pass filter transfer
functions for n = 0, 1, . . . , T2 − 1, the radius of the nth transfer function is less than that of (n + 1)th
transfer function. Fourth, if T1 > 1 and it is assumed that the outermost real pole is absent for n =
T2, T2 + 1, . . . , Nk − 1, then the following two additional facts are true. First, the above-mentioned
third fact is true starting from the second outermost real poles up to the innermost real pole for n =
0, 1, . . . , Nk − 1. Second, if the location of the pole of the last transfer function is more innermost than
that of first transfer function, then its radius is smaller.

5.3 Optimization of Finite-Precision Filters
It has been experimentally proved that the above-defined parameter space for each of three fil-
ter types under consideration forms a space including the feasible space where the filter spec-
ifications are satisfied. After finding this larger space, all that is needed is to check whether in
this space there exist combinations of the discrete pole positions with which the given overall
criteria are met.

5.3.1 Cascade connection of LWD filters
For cascade connections of low-order LWD filters, this search can be conveniently accom-

plished by first finding the sets of powers-of-two numbers Γ(k)
� for � = 0, 1, . . . , 2(L(k)

0 + L(k)
1 )

and for k = 1, 2, . . . , K between the smallest and largest values of each adaptor coefficient, that
is, by determining
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1 ) and for k = 1, 2, . . . , K. Here, POT(R,PR) denotes the space of the
powers-of-two numbers for R, the given maximum number of power-of-two terms, and PR,

the maximum number of fractional bits [cf. (9)]. Denote by S(k)
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� . Furthermore, denote by Γ(k)(s)
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The magnitude response is then evaluated for each combination of the Γ(k)(s)
� for � =

0, 1, . . . , 2(L(k)
0 + L(k)

1 ) and s = 1, 2, . . . , S(k)
� to check whether the filter meets the given specifi-

cations. Hence, the number of discrete coefficient value combinations to be considered is
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5.3.2 Approximately linear-phase LWD Filters
For approximately linear-phase LWD filters, the phase response is evaluated for all the so-
lutions satisfying the magnitude specifications to make sure that the finite-wordlength filter
meets the given overall criteria, that is, also the phase criteria of (23).

5.3.3 Recursive N th-band decimators and interpolators
For multistage decimators and interpolators, this finite-precision search can be performed
independently for each filter stage as in the single-stage equivalent described in Subsection
2.3, all the filter stages have, according to the discussion in (Renfors & Saramäki, 1987), their
own roles in providing the given attenuation in the predetermined stopband regions. This
considerably reduces the overall optimization time. Furthermore, having only real poles in the
overall implementation significantly reduces the overall finite-precision optimization time.

5.3.4 Finite wordlength considerations
The proper values for R and PR are selected to be the smallest values for which there exist the
discrete coefficient values between the smallest and largest values for the adaptor coefficients.
If no solution satisfying the prescribed criteria are found for the predetermined discrete co-
efficient representation form, then another less stringent coefficient representation has to be
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tried, that is, the wordlength or the maximum number of power-of-two terms is gradually
increased and the search is restarted until one or more desired finite-precision filters meeting
the given specifications are found.
It should be pointed out that for certain given wordlengths, there are typically several so-
lutions meeting the magnitude specifications. Therefore, it is advisable to find first all the
solutions satisfying the given criteria and then to choose among which the one with the best
attenuation characteristics or the minimum number of adders and/or subtracters required to
implement all the multipliers for the given wordlength.
In Fig. 8, the dots indicate the allowable locations for both the upper-half-plane complex-
conjugate pole and a real pole when three power-of-two terms with seven fractional bits are
used for the adaptor coefficient representations (R = 3 and PR = 7). Note that these distribu-
tions are highly irregular for a few power-of-two terms due to the desired coefficient represen-
tation form. However, as can be seen from this figure, there are, particularly for the innermost
complex-conjugate pole, regions where the angle of the pole corresponding to finite-precision
values of γ2l−1 and γ2l is smaller than Θ(min) or larger than Θ(max). For this reason, it is ad-
visable to check whether the angle of the discrete pole is in the prescribed region in order to
avoid the vain evaluation of the corresponding magnitude response. In addition, it is bene-
ficial, in order to speed up the search, to check whether the filter meets the given magnitude
specifications in two steps. First, the magnitude response is evaluated at band edges, that is,
in the low-pass case at ω = ωp and at ω = ωs. Second, only if the magnitude response at
these points stays within the given specifications, the remaining frequency points are evalu-
ated. This is because the worst-case deviations in both the passband(s) and stopband(s) of the
resulting finite-precision filter occur most likely at the band edges.

6. Numerical Examples

This section shows, by means of examples, the applicability of the overall synthesis scheme
described in the previous section for solving three optimization problems stated in Section 4.
More examples can be found in (Yli-Kaakinen, 1998; 2002; Yli-Kaakinen & Saramäki, 1999a;b;
2000; 2005; 2007).

6.1 Example 1
This example is included to illustrate the performance of the proposed overall synthesis
scheme for designing cascade connections of low-order LWD filters as well as to show the
superiority of these cascaded filters over direct LWD filters in finite wordlength implementa-
tions.
It is desired to design a low-pass filter with the passband and stopband edges at ωp = 0.1π
and at ωs = 0.2π, respectively. The maximum allowable passband ripple is Ap = 0.5 dB
(δp = 0.0559) and the minimum stopband attenuation is at least As = 100 dB (δs = 10−5),
respectively.
When the three-stage quantization scheme described in Section 5 is applied to K = 4, that
is, the overall transfer function is a cascade of four LWD filters of the same order, the initial
infinite-precision start-up solution for further optimization described in Subsection 5.1.1 (the
first main step of Section 5) can be determined by using four identical copies of a third-order
elliptic filter with the passband ripple of δp/4 = 0.0143 and the stopband ripple of 4

√
δs =

0.0562. The minimum odd order of an elliptic filter to meet the given magnitude criteria is
three. For this third-order initial elliptic subfilter just meeting the given passband criteria, the
minimum stopband attenuation is 25.75 dB (δs = 0.05158). The radius of the real pole as well

A(1,2,3,4)
0 (z) A(1,2,3,4)

1 (z)

r(1,2,3,4)
0 = 0.714855 r(1,2,3,4)

1 = 0.893594 θ
(1,2,3,4)
1 = 0.118835π

Table 1. Initial pole locations for the cascade of four LWD filters in Example 1.

as the radius and positive angle of the complex-conjugate pole pair for these initial subfilters
are given in Table 1. This initial filter already meets the given magnitude specifications and
can, therefore, be used itself without further optimization for accomplishing the second main
step of Section 5 that is described for these cascaded LWD filters in Subsection 5.2.1.
The smallest and largest values of the adaptor coefficients after the infinite-precision optimiza-
tion of this subsection are included in Table 2. In addition, this table gives the smallest and
largest values of the adaptor coefficients quantized at the third main step of Section 5 that is
described for these filters in Section 5.3.1 to the three power-of-two terms and five fractional

bits (R = 3 and PR = 5).4 The number of admissible discrete values S(k)
� between γ

(k)(min)
� and

γ
(k)(min)
� for � = 0, 1, 2 and for k = 1, 2, 3, 4 are also summarized in this table. In this case, the

overall number of combinations to be evaluated is approximately 134 · 106 [cf. (26)]. The CPU
time required by a Fortran 95 program to evaluate all these finite-precision coefficient combi-
nations on a 1.4-GHz Pentium-M with Ξp = Ξs = 30 [cf. (21a) and (21b)] was approximately
400 seconds.
The search space after the infinite-precision optimization is depicted in Fig. 9. In this figure,
the circles indicate the allowable locations for the poles inside the search space for the above-
mentioned adaptor coefficient representation form, whereas the largest, the second largest,
the third largest, and the smallest search spaces correspond to the kth sub-stage for k = 1,
k = 2, k = 3, and k = 4, respectively.
The specifications are met by the adaptor coefficients given in Table 3. A total of only six
adders and/or subtracters are required to implement all the adaptor coefficients when the
adaptors shown in Fig. 6 are used. Note that two sub-stages are identical. For this coefficient
representation form, there are 17 finite-precision solutions meeting the specifications among
which the one with the minimum implementation cost is selected. In Figure 9, the crosses de-
note the pole locations of this optimal solution. Figure 10 shows for this design the magnitude
responses of the four sub-stages as well as that of the overall filter. In addition, the passband
details of the magnitude response for the overall filter is included in this figure. The pole-zero
plot for the overall design is depicted in Fig. 11.
For K = 1, in turn, that is, for the single-stage design, the given criteria are met by the ninth-
order filter with adaptor coefficients given in Table 4. In this case, four power-of-two terms
with nine fractional bits (R = 4 and PR = 9) are required by the adaptor coefficients to still
meet the magnitude criteria. The magnitude responses and the pole-zero plot for this direct
LWD design are depicted in Figs. 12 and 13, respectively.
The above cascade of four low-order LWD filter sections is very attractive for VLSI implemen-
tations because the use of a costly multiplier element can be replaced by a harwired logic. If
the adaptors of Fig. 6 are utilized, then this harwired logic requires at most two power-of-two

4 In this case, three power-of-two terms and four fractional bits (R = 3 and PR = 4) is the shortest
wordlength for which there exist at least one discrete value between the smallest and largest values of
each adaptor coefficient. However, for this coefficient wordlength, there is no solution satisfying the
given specifications.
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tried, that is, the wordlength or the maximum number of power-of-two terms is gradually
increased and the search is restarted until one or more desired finite-precision filters meeting
the given specifications are found.
It should be pointed out that for certain given wordlengths, there are typically several so-
lutions meeting the magnitude specifications. Therefore, it is advisable to find first all the
solutions satisfying the given criteria and then to choose among which the one with the best
attenuation characteristics or the minimum number of adders and/or subtracters required to
implement all the multipliers for the given wordlength.
In Fig. 8, the dots indicate the allowable locations for both the upper-half-plane complex-
conjugate pole and a real pole when three power-of-two terms with seven fractional bits are
used for the adaptor coefficient representations (R = 3 and PR = 7). Note that these distribu-
tions are highly irregular for a few power-of-two terms due to the desired coefficient represen-
tation form. However, as can be seen from this figure, there are, particularly for the innermost
complex-conjugate pole, regions where the angle of the pole corresponding to finite-precision
values of γ2l−1 and γ2l is smaller than Θ(min) or larger than Θ(max). For this reason, it is ad-
visable to check whether the angle of the discrete pole is in the prescribed region in order to
avoid the vain evaluation of the corresponding magnitude response. In addition, it is bene-
ficial, in order to speed up the search, to check whether the filter meets the given magnitude
specifications in two steps. First, the magnitude response is evaluated at band edges, that is,
in the low-pass case at ω = ωp and at ω = ωs. Second, only if the magnitude response at
these points stays within the given specifications, the remaining frequency points are evalu-
ated. This is because the worst-case deviations in both the passband(s) and stopband(s) of the
resulting finite-precision filter occur most likely at the band edges.

6. Numerical Examples

This section shows, by means of examples, the applicability of the overall synthesis scheme
described in the previous section for solving three optimization problems stated in Section 4.
More examples can be found in (Yli-Kaakinen, 1998; 2002; Yli-Kaakinen & Saramäki, 1999a;b;
2000; 2005; 2007).

6.1 Example 1
This example is included to illustrate the performance of the proposed overall synthesis
scheme for designing cascade connections of low-order LWD filters as well as to show the
superiority of these cascaded filters over direct LWD filters in finite wordlength implementa-
tions.
It is desired to design a low-pass filter with the passband and stopband edges at ωp = 0.1π
and at ωs = 0.2π, respectively. The maximum allowable passband ripple is Ap = 0.5 dB
(δp = 0.0559) and the minimum stopband attenuation is at least As = 100 dB (δs = 10−5),
respectively.
When the three-stage quantization scheme described in Section 5 is applied to K = 4, that
is, the overall transfer function is a cascade of four LWD filters of the same order, the initial
infinite-precision start-up solution for further optimization described in Subsection 5.1.1 (the
first main step of Section 5) can be determined by using four identical copies of a third-order
elliptic filter with the passband ripple of δp/4 = 0.0143 and the stopband ripple of 4
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0.0562. The minimum odd order of an elliptic filter to meet the given magnitude criteria is
three. For this third-order initial elliptic subfilter just meeting the given passband criteria, the
minimum stopband attenuation is 25.75 dB (δs = 0.05158). The radius of the real pole as well
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Table 1. Initial pole locations for the cascade of four LWD filters in Example 1.

as the radius and positive angle of the complex-conjugate pole pair for these initial subfilters
are given in Table 1. This initial filter already meets the given magnitude specifications and
can, therefore, be used itself without further optimization for accomplishing the second main
step of Section 5 that is described for these cascaded LWD filters in Subsection 5.2.1.
The smallest and largest values of the adaptor coefficients after the infinite-precision optimiza-
tion of this subsection are included in Table 2. In addition, this table gives the smallest and
largest values of the adaptor coefficients quantized at the third main step of Section 5 that is
described for these filters in Section 5.3.1 to the three power-of-two terms and five fractional

bits (R = 3 and PR = 5).4 The number of admissible discrete values S(k)
� between γ

(k)(min)
� and

γ
(k)(min)
� for � = 0, 1, 2 and for k = 1, 2, 3, 4 are also summarized in this table. In this case, the

overall number of combinations to be evaluated is approximately 134 · 106 [cf. (26)]. The CPU
time required by a Fortran 95 program to evaluate all these finite-precision coefficient combi-
nations on a 1.4-GHz Pentium-M with Ξp = Ξs = 30 [cf. (21a) and (21b)] was approximately
400 seconds.
The search space after the infinite-precision optimization is depicted in Fig. 9. In this figure,
the circles indicate the allowable locations for the poles inside the search space for the above-
mentioned adaptor coefficient representation form, whereas the largest, the second largest,
the third largest, and the smallest search spaces correspond to the kth sub-stage for k = 1,
k = 2, k = 3, and k = 4, respectively.
The specifications are met by the adaptor coefficients given in Table 3. A total of only six
adders and/or subtracters are required to implement all the adaptor coefficients when the
adaptors shown in Fig. 6 are used. Note that two sub-stages are identical. For this coefficient
representation form, there are 17 finite-precision solutions meeting the specifications among
which the one with the minimum implementation cost is selected. In Figure 9, the crosses de-
note the pole locations of this optimal solution. Figure 10 shows for this design the magnitude
responses of the four sub-stages as well as that of the overall filter. In addition, the passband
details of the magnitude response for the overall filter is included in this figure. The pole-zero
plot for the overall design is depicted in Fig. 11.
For K = 1, in turn, that is, for the single-stage design, the given criteria are met by the ninth-
order filter with adaptor coefficients given in Table 4. In this case, four power-of-two terms
with nine fractional bits (R = 4 and PR = 9) are required by the adaptor coefficients to still
meet the magnitude criteria. The magnitude responses and the pole-zero plot for this direct
LWD design are depicted in Figs. 12 and 13, respectively.
The above cascade of four low-order LWD filter sections is very attractive for VLSI implemen-
tations because the use of a costly multiplier element can be replaced by a harwired logic. If
the adaptors of Fig. 6 are utilized, then this harwired logic requires at most two power-of-two

4 In this case, three power-of-two terms and four fractional bits (R = 3 and PR = 4) is the shortest
wordlength for which there exist at least one discrete value between the smallest and largest values of
each adaptor coefficient. However, for this coefficient wordlength, there is no solution satisfying the
given specifications.
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Fig. 9. Search spaces for the cascade of four LWD filters in Example 1 in the R = 3 and PR = 5
case.

k � γ
(k)(min)
� (z) γ

(k)(max)
� (z) Γ(k)(1)

� (z) Γ
(k)(S(k)� )

� (z) S(k)
�

0 0.182 392 0.729 620 2−2 − 2−4 1 − 2−2 − 2−5 18

1 1 −0.802 832 −0.531 560 −1 + 2−2 − 2−5 −2−1 − 2−4 8

2 0.739 326 0.931 286 1 − 2−2 1 − 2−3 + 2−5 6

0 0.473 568 0.745 019 2−1 1 − 2−2 − 2−5 8

2 1 −0.817 631 −0.666 228 −1 + 2−2 − 2−4 −1 + 2−2 + 2−4 5

2 0.835 625 0.934 313 1 − 2−3 − 2−5 1 − 2−3 + 2−5 3

0 0.573 298 0.770 266 2−1 + 2−3 − 2−5 1 − 2−2 6

3 1 −0.834 543 −0.726 433 −1 + 2−2 − 2−4 −1 + 2−2 3

2 0.863 579 0.937 735 1 − 2−3 1 − 2−4 3

0 0.663 425 0.802 724 1 − 2−2 − 2−4 1 − 2−2 + 2−5 4

4 1 −0.861 770 −0.757 413 −1 + 2−3 + 2−5 −1 + 2−2 − 2−5 3

2 0.887 134 0.942 355 1 − 2−3 + 2−5 1 − 2−4 2

Table 2. The smallest and largest values for both the infinite-precision and finite-precision
coefficients in Example 1.

terms, instead of R = 3 terms, containing only PR = 5 fractional for implementing all the α
values in these adaptors.
In comparison, the direct LWD design requires for some coefficient values R = 4 power-of-
two terms and PR = 9 fractional bits. The price paid for this significantly reduced complexity
in implementing the adaptor coefficient values in the cascaded implementation is a slight
increase (from nine to twelve) in the overall filter order compared to the direct LWD filter.
Another remarkable advantage of the proposed cascaded filter in comparison with the direct
LWD filter is that the radius of the outermost complex-conjugate pole pair is significantly

A(k)
0 (z) A(k)

1 (z)

γ
(1,2)
0 = 2−1 + 2−3 γ

(1,2)
1 = −1 + 2−2 − 2−5 γ

(1,2)
2 = 1 − 2−3 + 2−5

γ
(3)
0 = 2−1 + 2−3 + 2−5 γ

(3)
1 = −1 + 2−2 γ

(3)
2 = 1 − 2−3 + 2−5

γ
(4)
0 = 1 − 2−2 + 2−5 γ

(4)
1 = −1 + 2−2 − 2−4 γ

(4)
2 = 1 − 2−4

Table 3. Optimized finite-precision adaptor coefficients for the cascade of four LWD filters in
Example 1.

A(0)
0 (z) A(1)

1 (z)

γ
(1)
0 = 1 − 2−3 + 2−6

γ
(1)
1 = −1 + 2−3 + 2−6 + 2−9 γ

(1)
5 = −1 + 2−2 − 2−4 + 2−9

γ
(1)
2 = 1 − 2−5 γ

(1)
6 = 1 − 2−6 + 2−9

γ
(1)
3 = −1 + 2−5 − 2−7 − 2−9 γ

(1)
7 = −1 + 2−4 + 2−6

γ
(1)
4 = 1 − 2−4 − 2−8 γ

(1)
8 = 1 − 2−4 + 2−6 − 2−8

Table 4. Optimized finite-precision adaptor coefficients for the direct LWD filter in Example 1.
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Fig. 10. Some magnitude responses for the cascade of four optimized finite-precision LWD
filters in Example 1. The solid and dashed lines show the responses for the overall filter
and the subfilters, respectively. Two subfilters are identical (the dashed line with the lowest
attenuation).

smaller. For K = 1 and K = 4, these values are 0.98920 and 0.90138, respectively. When
using the adaptors shown in Fig. 6, the output noise gains are 31.9 dB and 21.8 dB for K = 1
and K = 4, respectively. This means that for K = 4 roughly two fewer bits are required for
the data representation to arrive at approximately the same output noise level as with the
corresponding direct LWD filter.
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Fig. 9. Search spaces for the cascade of four LWD filters in Example 1 in the R = 3 and PR = 5
case.

k � γ
(k)(min)
� (z) γ

(k)(max)
� (z) Γ(k)(1)

� (z) Γ
(k)(S(k)� )

� (z) S(k)
�

0 0.182 392 0.729 620 2−2 − 2−4 1 − 2−2 − 2−5 18

1 1 −0.802 832 −0.531 560 −1 + 2−2 − 2−5 −2−1 − 2−4 8

2 0.739 326 0.931 286 1 − 2−2 1 − 2−3 + 2−5 6

0 0.473 568 0.745 019 2−1 1 − 2−2 − 2−5 8

2 1 −0.817 631 −0.666 228 −1 + 2−2 − 2−4 −1 + 2−2 + 2−4 5

2 0.835 625 0.934 313 1 − 2−3 − 2−5 1 − 2−3 + 2−5 3

0 0.573 298 0.770 266 2−1 + 2−3 − 2−5 1 − 2−2 6

3 1 −0.834 543 −0.726 433 −1 + 2−2 − 2−4 −1 + 2−2 3

2 0.863 579 0.937 735 1 − 2−3 1 − 2−4 3

0 0.663 425 0.802 724 1 − 2−2 − 2−4 1 − 2−2 + 2−5 4

4 1 −0.861 770 −0.757 413 −1 + 2−3 + 2−5 −1 + 2−2 − 2−5 3

2 0.887 134 0.942 355 1 − 2−3 + 2−5 1 − 2−4 2

Table 2. The smallest and largest values for both the infinite-precision and finite-precision
coefficients in Example 1.

terms, instead of R = 3 terms, containing only PR = 5 fractional for implementing all the α
values in these adaptors.
In comparison, the direct LWD design requires for some coefficient values R = 4 power-of-
two terms and PR = 9 fractional bits. The price paid for this significantly reduced complexity
in implementing the adaptor coefficient values in the cascaded implementation is a slight
increase (from nine to twelve) in the overall filter order compared to the direct LWD filter.
Another remarkable advantage of the proposed cascaded filter in comparison with the direct
LWD filter is that the radius of the outermost complex-conjugate pole pair is significantly

A(k)
0 (z) A(k)
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γ
(1,2)
0 = 2−1 + 2−3 γ

(1,2)
1 = −1 + 2−2 − 2−5 γ
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2 = 1 − 2−3 + 2−5

γ
(3)
0 = 2−1 + 2−3 + 2−5 γ

(3)
1 = −1 + 2−2 γ

(3)
2 = 1 − 2−3 + 2−5

γ
(4)
0 = 1 − 2−2 + 2−5 γ

(4)
1 = −1 + 2−2 − 2−4 γ

(4)
2 = 1 − 2−4

Table 3. Optimized finite-precision adaptor coefficients for the cascade of four LWD filters in
Example 1.
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0 = 1 − 2−3 + 2−6

γ
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1 = −1 + 2−3 + 2−6 + 2−9 γ
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5 = −1 + 2−2 − 2−4 + 2−9
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(1)
6 = 1 − 2−6 + 2−9

γ
(1)
3 = −1 + 2−5 − 2−7 − 2−9 γ

(1)
7 = −1 + 2−4 + 2−6

γ
(1)
4 = 1 − 2−4 − 2−8 γ

(1)
8 = 1 − 2−4 + 2−6 − 2−8

Table 4. Optimized finite-precision adaptor coefficients for the direct LWD filter in Example 1.
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Fig. 10. Some magnitude responses for the cascade of four optimized finite-precision LWD
filters in Example 1. The solid and dashed lines show the responses for the overall filter
and the subfilters, respectively. Two subfilters are identical (the dashed line with the lowest
attenuation).

smaller. For K = 1 and K = 4, these values are 0.98920 and 0.90138, respectively. When
using the adaptors shown in Fig. 6, the output noise gains are 31.9 dB and 21.8 dB for K = 1
and K = 4, respectively. This means that for K = 4 roughly two fewer bits are required for
the data representation to arrive at approximately the same output noise level as with the
corresponding direct LWD filter.
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Fig. 11. Pole-zero plot for the cascade of four optimized finite-precision LWD filters in
Example 1.
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Fig. 12. Some magnitude responses for the optimized finite-precision direct LWD filter in
Example 1.

6.2 Example 2
This example is included to illustrate the performance of the proposed overall synthesis
scheme for designing approximately linear-phase finite-precision LWD filters as well as to
compare these filters with their linear-phase FIR filter equivalents.
It is desired to design a low-pass filter with passband and stopband edges at ωp = 0.05π and
at ωs = 0.1π, respectively. The maximum allowable passband ripple is Ap = 0.2 dB (δp =

0.0228) and the stopband attenuation is As = 60 dB (δs = 10−3). The maximum allowable
phase deviation in the passband from the average slope, in turn, is ∆ = 0.5 degrees. In this
case, an excellent phase performance is obtained by using a ninth-order LWD filter.
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Fig. 13. Pole-zero plot for the optimized finite-precision direct LWD filter in Example 1.
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0 (z) A(1)
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γ
(1)
0 = 1 − 2−4

γ
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1 = −1 + 2−5 − 2−7 γ

(1)
5 = −1 + 2−4 + 2−7 + 2−9

γ
(1)
2 = 1 − 2−5 + 2−7 γ

(1)
6 = 1 − 2−6 − 2−9 + 2−11

γ
(1)
3 = −1 + 2−3 − 2−6 + 2−10 γ

(1)
7 = −1 + 2−3 − 2−8

γ
(1)
4 = 1 − 2−7 − 2−10 γ

(1)
8 = 1 − 2−8

Table 5. Optimized finite-precision adaptor coefficients for the approximately linear-phase
LWD filter in Example 2.

The filter specifications are met if the adaptor coefficient are represented using four power-
of-two terms with eleven fractional bits (R = 4 and PR = 11) as given in Table 5. A total of
ten adders and/or subtracters are required to implement all the adaptor coefficients when the
adaptors shown in Fig. 6 are utilized. The magnitude and phase characteristics of the resulting
filter are depicted in Fig. 14, whereas Fig. 15 gives the pole-zero plot.
The minimum order of a linear-phase FIR filter to meet the same magnitude specifications
is 107, requiring 107 delay elements and 54 multipliers when exploiting coefficient symme-
try. The delay of the linear-phase FIR equivalent is 53.5 samples, whereas for the proposed
recursive filter the delay is only 40.9 samples.

6.3 Example 3
This example is included to illustrate the performance of the proposed overall design algo-
rithm for synthesizing recursive Nth-band decimators. It is desired to design an eighth-band
(N = 8) filter with the passband edge at ωp = 0.0785π = 0.628π/8. The minimum stopband
attenuation is at least As = 60 dB (δs = 10−3). In this case, the stopband region, as given
by (17), is Ωs = [0.1715π, 0.3285π] ∪ [0.4215π, 0.5785π] ∪[0.6715π, 0.8285π] ∪ [0.9215π, π],
that is, the aliasing into to the transition band [0.0785π, 0.125π] is allowed from the bands
[0.3285π, 0.4215π], [0.5785π, 0.6715π], and [0.8285π, 0.9215π].
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Fig. 11. Pole-zero plot for the cascade of four optimized finite-precision LWD filters in
Example 1.
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6.2 Example 2
This example is included to illustrate the performance of the proposed overall synthesis
scheme for designing approximately linear-phase finite-precision LWD filters as well as to
compare these filters with their linear-phase FIR filter equivalents.
It is desired to design a low-pass filter with passband and stopband edges at ωp = 0.05π and
at ωs = 0.1π, respectively. The maximum allowable passband ripple is Ap = 0.2 dB (δp =

0.0228) and the stopband attenuation is As = 60 dB (δs = 10−3). The maximum allowable
phase deviation in the passband from the average slope, in turn, is ∆ = 0.5 degrees. In this
case, an excellent phase performance is obtained by using a ninth-order LWD filter.
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Fig. 13. Pole-zero plot for the optimized finite-precision direct LWD filter in Example 1.

A(1)
0 (z) A(1)

1 (z)

γ
(1)
0 = 1 − 2−4

γ
(1)
1 = −1 + 2−5 − 2−7 γ

(1)
5 = −1 + 2−4 + 2−7 + 2−9

γ
(1)
2 = 1 − 2−5 + 2−7 γ

(1)
6 = 1 − 2−6 − 2−9 + 2−11

γ
(1)
3 = −1 + 2−3 − 2−6 + 2−10 γ

(1)
7 = −1 + 2−3 − 2−8

γ
(1)
4 = 1 − 2−7 − 2−10 γ

(1)
8 = 1 − 2−8

Table 5. Optimized finite-precision adaptor coefficients for the approximately linear-phase
LWD filter in Example 2.

The filter specifications are met if the adaptor coefficient are represented using four power-
of-two terms with eleven fractional bits (R = 4 and PR = 11) as given in Table 5. A total of
ten adders and/or subtracters are required to implement all the adaptor coefficients when the
adaptors shown in Fig. 6 are utilized. The magnitude and phase characteristics of the resulting
filter are depicted in Fig. 14, whereas Fig. 15 gives the pole-zero plot.
The minimum order of a linear-phase FIR filter to meet the same magnitude specifications
is 107, requiring 107 delay elements and 54 multipliers when exploiting coefficient symme-
try. The delay of the linear-phase FIR equivalent is 53.5 samples, whereas for the proposed
recursive filter the delay is only 40.9 samples.

6.3 Example 3
This example is included to illustrate the performance of the proposed overall design algo-
rithm for synthesizing recursive Nth-band decimators. It is desired to design an eighth-band
(N = 8) filter with the passband edge at ωp = 0.0785π = 0.628π/8. The minimum stopband
attenuation is at least As = 60 dB (δs = 10−3). In this case, the stopband region, as given
by (17), is Ωs = [0.1715π, 0.3285π] ∪ [0.4215π, 0.5785π] ∪[0.6715π, 0.8285π] ∪ [0.9215π, π],
that is, the aliasing into to the transition band [0.0785π, 0.125π] is allowed from the bands
[0.3285π, 0.4215π], [0.5785π, 0.6715π], and [0.8285π, 0.9215π].
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Fig. 14. Magnitude and phase responses for the optimized finite-precision approximately
linear-phase LWD filter in Example 2.

For the three-stage design, the only option to factor the sampling rate conversion ratio is
N1 = N2 = N3 = 2. This factorization gives, according to the discussion of Subsection 2.3, rise
to a single-stage equivalent with the transfer function of the form H(z) = H1(z)H2(z2)H3(z4)
where H1(z), H2(z), and H3(z) are half-band LWD filters. According to the design scheme
described in (Renfors & Saramäki, 1987), the desired 60-dB stopband attenuation is achieved
by simultaneously determining these three subfilters such that H3(z4), H2(z2), and H1(z)
primarily take care of providing this attenuation on [0.1715π, 0.3285π] ∪ [0.6715π, 0.8285π],
[0.4215π, 0.5785π], and [0.9215π, π], respectively. The resulting minimum orders of H1(z),
H2(z), and H3(z) to simultaneously meet the given specifications become 3, 5, and 7, respec-

tively. When following the notations of Subsection 2.3, the orders L(k)
0 and L(k)

1 of the branch

transfer functions A(k)
0 (z) and A(k)

1 (z) of Hk(z) for k = 1, 2, 3 become L(1)
0 = 1 and L(1)

1 = 0;

L(2)
0 = L(2)

0 = 1; and L(3)
0 = 2 and L(3)

1 = 1; respectively.

The initial adaptor coefficient values for H3(z4) are γ
(3)
1 = −0.085523, γ

(3)
2 = −0.718273,

and γ
(3)
3 = −0.326452, for H2(z2), γ

(2)
1 = −0.116797 and γ

(2)
2 = −0.548630, and for H1(z),

γ
(1)
1 = −0.338473. The stopband attenuations provided by these initial sub-stages H3(z4),

H2(z2), and H1(z) in the stopband regions they primarily concentrate on are 73.21 dB, 83.97
dB, and 66.45 dB, respectively. The smallest and largest values for the adaptor coefficients of
the sub-stages H3(z4), H2(z2), and H1(z) after applying the infinite-precision optimization of
Subsection 5.2 are given in Table 6.
For this overall filter, the maximum number of power-of-two terms required to implement all
the adaptor coefficients is four (R = 4), whereas eight fractional bits (PR = 8) are required
to meet the magnitude specifications. For this coefficient representation form, the number
of discrete coefficient values between the smallest and largest values for the coefficients of
H3(z3) is 14, 21, and 33, that is, the number of coefficient combinations for the last stage
is 14 · 21 · 33 = 9702. The number of discrete coefficient values between the smallest and
largest values for the coefficients of H2(z2) are 19 and 33, that is, the number of coefficient
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Fig. 15. Pole-zero plot for the optimized finite-precision approximately linear- phase LWD
filter in Example 2.

A(3)
0 (z4)

γ
(3)(min)
1 = −0.111647 γ

(3)(max)
1 = −0.057811

H3(z4) γ
(3)(min)
2 = −0.771093 γ

(3)(max)
2 = −0.681117

A(3)
1 (z4) γ

(3)(min)
3 = −0.395188 γ

(3)(max)
3 = −0.268425

H2(z2)
A(2)

0 (z2) γ
(2)(min)
1 = −0.156770 γ

(2)(max)
1 = −0.082365

A(2)
1 (z2) γ
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1 = −0.341785 γ

(1)(max)
1 = −0.336582

Table 6. The smallest and largest infinite-precision coefficient values for the subfilters H3(z4),
H2(z2), and H1(z) in Example 3.
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1 = −0.12500000 = −2−3

A(2)
1 (z2) γ

(2)
2 = −0.56250000 = −2−1 − 2−4

H1(z) A(1)
0 (z) γ

(1)
1 = −0.33984375 = −2−1 + 2−3 + 2−5 + 2−8

Table 7. Optimized finite-precision coefficient values for the three-stage eighth-band filter in
Example 3.

combinations for the second stage is 627. For the first stage with transfer function H1(z), there
exists only one discrete coefficient value between the smallest and largest values of the single
coefficient. The CPU time required when using a Fortran 95 program on a 1.4 GHz Pentium-
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linear-phase LWD filter in Example 2.

For the three-stage design, the only option to factor the sampling rate conversion ratio is
N1 = N2 = N3 = 2. This factorization gives, according to the discussion of Subsection 2.3, rise
to a single-stage equivalent with the transfer function of the form H(z) = H1(z)H2(z2)H3(z4)
where H1(z), H2(z), and H3(z) are half-band LWD filters. According to the design scheme
described in (Renfors & Saramäki, 1987), the desired 60-dB stopband attenuation is achieved
by simultaneously determining these three subfilters such that H3(z4), H2(z2), and H1(z)
primarily take care of providing this attenuation on [0.1715π, 0.3285π] ∪ [0.6715π, 0.8285π],
[0.4215π, 0.5785π], and [0.9215π, π], respectively. The resulting minimum orders of H1(z),
H2(z), and H3(z) to simultaneously meet the given specifications become 3, 5, and 7, respec-

tively. When following the notations of Subsection 2.3, the orders L(k)
0 and L(k)

1 of the branch

transfer functions A(k)
0 (z) and A(k)

1 (z) of Hk(z) for k = 1, 2, 3 become L(1)
0 = 1 and L(1)

1 = 0;

L(2)
0 = L(2)

0 = 1; and L(3)
0 = 2 and L(3)

1 = 1; respectively.

The initial adaptor coefficient values for H3(z4) are γ
(3)
1 = −0.085523, γ

(3)
2 = −0.718273,

and γ
(3)
3 = −0.326452, for H2(z2), γ

(2)
1 = −0.116797 and γ

(2)
2 = −0.548630, and for H1(z),

γ
(1)
1 = −0.338473. The stopband attenuations provided by these initial sub-stages H3(z4),

H2(z2), and H1(z) in the stopband regions they primarily concentrate on are 73.21 dB, 83.97
dB, and 66.45 dB, respectively. The smallest and largest values for the adaptor coefficients of
the sub-stages H3(z4), H2(z2), and H1(z) after applying the infinite-precision optimization of
Subsection 5.2 are given in Table 6.
For this overall filter, the maximum number of power-of-two terms required to implement all
the adaptor coefficients is four (R = 4), whereas eight fractional bits (PR = 8) are required
to meet the magnitude specifications. For this coefficient representation form, the number
of discrete coefficient values between the smallest and largest values for the coefficients of
H3(z3) is 14, 21, and 33, that is, the number of coefficient combinations for the last stage
is 14 · 21 · 33 = 9702. The number of discrete coefficient values between the smallest and
largest values for the coefficients of H2(z2) are 19 and 33, that is, the number of coefficient
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Fig. 15. Pole-zero plot for the optimized finite-precision approximately linear- phase LWD
filter in Example 2.
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(1)(min)
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1 = −0.336582

Table 6. The smallest and largest infinite-precision coefficient values for the subfilters H3(z4),
H2(z2), and H1(z) in Example 3.
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1 (z2) γ

(2)
2 = −0.56250000 = −2−1 − 2−4

H1(z) A(1)
0 (z) γ

(1)
1 = −0.33984375 = −2−1 + 2−3 + 2−5 + 2−8

Table 7. Optimized finite-precision coefficient values for the three-stage eighth-band filter in
Example 3.

combinations for the second stage is 627. For the first stage with transfer function H1(z), there
exists only one discrete coefficient value between the smallest and largest values of the single
coefficient. The CPU time required when using a Fortran 95 program on a 1.4 GHz Pentium-
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(1)
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(1)
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A(1)
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(1)
1 = −0.17968750 = −2−2 + 2−4 + 2−7 γ

(1)
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A(1)
5 (z) γ

(1)
1 = −0.24218750 = −2−2 + 2−7 γ

(1)
2 = −0.94921875 = −1 + 2−4 − 2−6 + 2−8

A(1)
6 (z) γ

(1)
1 = −0.32031250 = −2−2 − 2−4 − 2−7

A(1)
7 (z) γ

(1)
1 = −0.43359375 = −2−1 + 2−4 + 2−8

Table 8. Optimized finite-precision adaptor coefficients for the single-stage eighth-band deci-
mator in Example 3.

M to evaluate all these combinations with Ξs = 100 stopband grid points was less than one
second.
The number of adders and/or subtracters required to implement all the adaptor coefficients
is seven when the adaptors shown in Fig. 6 are utilized. The optimized finite-precision coeffi-
cients values are given in Table 7, whereas the magnitude responses for the sub-stages as well
as for the single-stage equivalent are depicted in Fig. 16. The pole-zero plot for this equivalent
is, in turn, shown in Fig. 17. The passband variation and the minimum stopband attenuation
for the optimized finite-precision overall filter are Ap = −4.278 · 10−6 dB and As = 60.21 dB,
respectively. An efficient implementation of the optimized eight-band decimator is depicted
in Fig. 18

For the single-stage design, that is, for a direct eighth-band filter, the minimum orders L(1)
n of

the eight all-pass branch filters A(1)
n (z) for n = 0, 1, . . . , 7 to meet the given specifications are

L(1)
n = 2 for n = 0, 1, . . . , 5 and L(1)

6 = L(1)
7 = 1 so that the minimum number of multipli-
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Fig. 17. Pole-zero plot for the optimized finite-precision three-stage eighth-band decimator in
Example 3.

ers in the overall implementation is 14. The stopband attenuation of this initial filter is 60.84
dB. Again, the specifications are met by R = 4 and PR = 8 even though the allowable mar-
gin for the coefficient quantization is only 0.84 dB. The specifications are met by the adaptor
coefficients given in Table 8. In this case, the number of adders and/or subtracters required
to implement all the coefficients is 17 when the adaptors shown in Fig. 6 are utilized. The
passband variation and the minimum stopband attenuation for this optimized finite-precision
single-stage decimation filter are Ap = 1.584 · 10−5 dB and As = 60.18 dB, respectively. The
magnitude response and the pole-zero plot for this decimation filter are depicted in Figs. 19
and 20, respectively.

7. Conclusions

A systematic three-step algorithm has been developed for designing lattice wave digital
(LWD) filters with short coefficient wordlength. The filter classes under consideration have
been cascades of low-order LWD filters, approximately linear-phase LWD filters, and recur-
sive Nth-band decimators and interpolators. The transfer functions, filter specifications, and
optimization problems have been stated for each filter class under consideration. Then, the
proposed three-step algorithm has been adapted for solving these optimization problems. The
goal has been to find all the coefficient values such that the overall implementation does not
require general multipliers. It has been shown that significant savings in the implementation
cost are achieved by using the proposed technique. The efficiency and the robustness of the
proposed algorithm has been demonstrated by means of several examples.

8. References

Ansari, R. & Liu, B. (1983). Efficient sampling rate alteration using recursive IIR digital filters,
IEEE Trans. Acoust., Speech, Signal Processing ASSP-31: 1366–1373.



A Systematic Algorithm for the Synthesis of Multiplierless Lattice Wave Digital Filters 285

         
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

M
a

g
n

it
u

d
e

 in
 d

B

Angular Frequency ω

0 0.125π 0.25π 0.375π 0.5π 0.625π 0.75π 0.875π  π 

Fig. 16. Magnitude responses for the optimized finite-precision three-stage eighth-band deci-
mator in Example 3. The solid line gives the magnitude response for the single-stage equiva-
lent H1(z)H2(z2)H3(z4), whereas the dotted, dot-dashed, and dashed lines give the responses
for H1(z), H2(z2), and H3(z4), respectively.

A(1)
0 (z) γ

(1)
1 = −0.01953125 = −2−6 − 2−8 γ

(1)
2 = −0.53125000 = −2−1 − 2−5

A(1)
1 (z) γ

(1)
1 = −0.04687500 = −2−4 + 2−6 γ

(1)
2 = −0.62500000 = −2−1 − 2−3

A(1)
2 (z) γ

(1)
1 = −0.07812500 = −2−4 − 2−6 γ

(1)
2 = −0.71875000 = −1 + 2−2 + 2−5

A(1)
3 (z) γ

(1)
1 = −0.12109375 = −2−3 + 2−8 γ

(1)
2 = −0.80859375 = −1 + 2−2 − 2−4 + 2−8

A(1)
4 (z) γ

(1)
1 = −0.17968750 = −2−2 + 2−4 + 2−7 γ
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Table 8. Optimized finite-precision adaptor coefficients for the single-stage eighth-band deci-
mator in Example 3.

M to evaluate all these combinations with Ξs = 100 stopband grid points was less than one
second.
The number of adders and/or subtracters required to implement all the adaptor coefficients
is seven when the adaptors shown in Fig. 6 are utilized. The optimized finite-precision coeffi-
cients values are given in Table 7, whereas the magnitude responses for the sub-stages as well
as for the single-stage equivalent are depicted in Fig. 16. The pole-zero plot for this equivalent
is, in turn, shown in Fig. 17. The passband variation and the minimum stopband attenuation
for the optimized finite-precision overall filter are Ap = −4.278 · 10−6 dB and As = 60.21 dB,
respectively. An efficient implementation of the optimized eight-band decimator is depicted
in Fig. 18

For the single-stage design, that is, for a direct eighth-band filter, the minimum orders L(1)
n of

the eight all-pass branch filters A(1)
n (z) for n = 0, 1, . . . , 7 to meet the given specifications are
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ers in the overall implementation is 14. The stopband attenuation of this initial filter is 60.84
dB. Again, the specifications are met by R = 4 and PR = 8 even though the allowable mar-
gin for the coefficient quantization is only 0.84 dB. The specifications are met by the adaptor
coefficients given in Table 8. In this case, the number of adders and/or subtracters required
to implement all the coefficients is 17 when the adaptors shown in Fig. 6 are utilized. The
passband variation and the minimum stopband attenuation for this optimized finite-precision
single-stage decimation filter are Ap = 1.584 · 10−5 dB and As = 60.18 dB, respectively. The
magnitude response and the pole-zero plot for this decimation filter are depicted in Figs. 19
and 20, respectively.

7. Conclusions

A systematic three-step algorithm has been developed for designing lattice wave digital
(LWD) filters with short coefficient wordlength. The filter classes under consideration have
been cascades of low-order LWD filters, approximately linear-phase LWD filters, and recur-
sive Nth-band decimators and interpolators. The transfer functions, filter specifications, and
optimization problems have been stated for each filter class under consideration. Then, the
proposed three-step algorithm has been adapted for solving these optimization problems. The
goal has been to find all the coefficient values such that the overall implementation does not
require general multipliers. It has been shown that significant savings in the implementation
cost are achieved by using the proposed technique. The efficiency and the robustness of the
proposed algorithm has been demonstrated by means of several examples.
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